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ABSTRACT 

 

This paper delivers a preliminary comparative study on the computation 

of wave resistance via a commercial CFD solver (STAR-CCM+®) versus 

an in-house developed IGA-BEM solver for a pair of hulls, namely the 

parabolic Wigley hull and the KRISO container ship (KCS). The CFD 

solver combines a VOF (Volume Of Fluid) free-surface modelling 

technique with alternative turbulence models, while the IGA-BEM solver 

adopts an inviscid flow model that combines the Boundary Element 

approach (BEM) with Isogeometric Analysis (IGA) using T-splines or 

NURBS. IGA is a novel and expanding concept, introduced by Hughes 

and his collaborators (Hughes et al, 2005), aiming to intrinsically 

integrate CAD with Analysis by communicating the CAD model of the 

geometry (the wetted ship hull in our case) to the solver without any 

approximation.  

 

KEY WORDS:  Computational Fluid Dynamics (CFD); Reynolds 

Averaged Navier Stokes (RANS) equations; Boundary Element Method 

(BEM), Isogeometric Analysis (IGA); wave resistance; Wigley ship; 

KRISO Container Ship (KCS). 

 

 

INTRODUCTION 

 

The prediction of wave resistance in naval architecture plays an important 

role in hull optimisation, especially for higher Froude numbers when 

wave-resistance’s share in total resistance becomes higher. It is well 

known that the total resistance of a ship can be roughly decomposed into 

the sum of frictional, viscous-pressure and wave resistance. Model testing 

is commonly used to predict the resistance components for new ships 

(ITTC, 1987). With the recent improvements in CFD (Computational 

Fluid Dynamics) tools, CFD is likely to provide a decent alternative for 

saving time and money for the prediction of resistance for modern ship 

hulls. This is not, however, the case for ship-hull optimisation when the 

geometry is unknown, which increases drastically the overall 

computational cost and the significance of deviation between the 

accurate CAD model of a ship hull and its discrete approximation usually 

adopted by the CFD solvers.  

 

An alternative lower-cost path for the wave-resistance estimation can be 

employed by appealing to the Boundary Element Method (BEM) for 

solving the Boundary Integral Equation (BIE), which results from 

adopting the so-called Neumann-Kelvin model for the flow around an 

object moving on the otherwise undisturbed free-surface of an inviscid 

and irrotational liquid; see, e.g., (Brard, 1972) and (Baar and Price 1988).  

Our purpose is to initiate a systematic comparative study between a CFD 

solver (STAR-CCM+) and an in-house  BEM solver enhanced with the 

IGA concept, which permits to tightly integrate the CAD model of a ship 

hull and its IGA-BEM solver; see, e.g. (Belibassakis et al 2013).  Under 

the condition that this study will secure that the discrepancy between the 

results provided by the two solvers are acceptable within the operational 

range of Froude numbers, one can proceed to develop a hybrid mid-cost 

optimisation framework that combines appropriately the low-cost IGA-

BEM solver (Kostas et al, 2015) with the high-cost CFD one. In the 

present paper our comparison will involve two hulls, namely the Wigley 

and the KCS hull, which have been extensively used in pertinent literature 

for experimental and computational purposes.  

 

 

CFD SOLVER: METHODOLOGY AND SETUP  
 

NAOME has provided (to the first three co-authors) access to the 

commercial CFD solver STAR-CCM+®, which uses a finite-volume 

method for capturing the free-surface elevation created by an object 

moving with constant velocity on the otherwise undisturbed free-surface 

of viscous incompressible fluid. This method uses a Volume of Fluid 

(VOF) approach based on integrating the incompressible Reynolds time –

averaged Navier-Stokes (RANS) equations (Eq. 3, 4) over a control 

volume. Recall that the Navier-Stokes equations can be written as: 
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where V=(V1,V2,V3) is the fluid-velocity vector, ρ is the fluid density, μ 

is the dynamic viscosity and f represents the external forces acting on the 

fluid. The associated RANS equations can then be written in tensor form 

as: 

 

 )2(
1

)( ''

jiij

ji

ji

j

uuvS
xx

p
UU

xt

Ui























,                     (3)

                                                                                                                        

 0




i

i

x

U ,                                                                                              (4) 

where 
iU  stands for the mean flow velocity component (i=1,2,3), ν is 

the kinematic viscosity, ijS  is the mean strain-rate tensor given by: 
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and, finally, 
''

jiuu  is the Reynolds stress tensor ijR . The well-known 

closure problem of RANS equations consists in modelling the Reynolds 

stress tensor as a function of the mean velocity and pressure, in order to 

remove any reference to the fluctuating part of the velocity. In this work 

we employ two of the most common turbulence models used in CFD, 

namely the k-epsilon (k-ε) model and the k–omega (k–ω) model. The k-

epsilon model is a two equation model which gives a general description 

of turbulence by means of two transport partial differential equations; see, 

e.g., (Launder and Spalding 1974). The k–omega model attempts to 

predict turbulence by two partial differential equations in terms of two 

variables, namely k and ω, with k being the turbulence kinetic energy 

while ω is the specific rate of dissipation of the turbulence kinetic energy 

k into internal thermal energy; see, e.g., (Wilcox 2008). 

 

Locating the free surface in the two-phase (air, liquid) flow, created by 

the movement of a body on the free-surface of a fluid, can be materialised 

via the so-called Volume Fraction Transport equation (Peric & Ferziger, 

2002) given below  
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where the volume fraction c  is equal to 
totalair VV  and  the fluid density  

 is equal to  

)1( cc waterair   ,                                                                 (7)  

).1( cc waterair                                                                (8)  

 

According to the standard practice, the total resistance of a ship is 

subdivided into two components, namely: 

      

𝐶𝑇 = 𝐶𝐹 + 𝐶𝑅,                                                                                       (9) 

 

where 𝐶𝑇is the total resistance coefficient, 𝐶𝐹 is the friction resistance 

coefficient and 𝐶𝑅 is the residual resistance coefficient. The friction 

resistance coefficient depends only on Reynolds number Rn and assumed 

to be independent from the residual resistance coefficient. Residual 

                                                           
1 https://www.nmri.go.jp/institutes/fluid_performance_evaluation/cfd_rd/ 

 

resistance (coefficient) can be further decomposed into wave resistance 

𝐶𝑊  and viscous pressure resistance 𝐶𝑉𝑃 coefficients, resulting in: 

 

𝐶𝑇 = 𝐶𝐹 + 𝐶𝑉𝑃 + 𝐶𝑊.                                                                  (10) 
 

In the context of the the resistance test method adopted by the 

International Towing Tank Conference (ITTC) on 1978, the concept of 

form-factor k has been introduced, based on two assumptions, i.e., 

invariance between the model and the full-scale ship and invariance 

with respect to the Froude number Fr. Working in this context, we can 

write  

 

𝐶𝑉𝑃 = 𝑘𝐶𝐹,                                                                                          (11)  

 

which results in:  

 

𝐶𝑇 = (1 + 𝑘)𝐶𝐹 + 𝐶𝑊.                                                                        (12) 

 

For the two case studies undertaken in this paper, the form-factor for the 

Wigley hull will rely on experimental values from (Ju 1983) while the  

form-factor for the KCS hulls will be based on experimental results and 

CFD estimates.  

 

Wigley hull is a biquadratic surface expressed analytically as: 
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where L=4.0m (length between perpendiculars), B=0.4m (breadth), 

T=0.25m (draft), while x identifies the distance from mid-ship (positive 

towards bow), y denotes the distance from the symmetry plane and z 

denotes the distance measured from the undisturbed free-surface. 

 

The second case study is a model of the so-called KCS (KRISO container 

ship) with main particulars given in Table 1. The CFD solver is using the 

NURBS-based CAD model (see Fig. 1) of the KCS ship which is 

available at the web-site of NMRI (National, Maritime Research 

Institute) of Japan1. For the needs of the IGA-BEM solver a new CAD 

model (see Fig. 2), as a multi patch NURBS model of the KCS model has 

been rebuilt for the hull below the waterline. This CAD model comprises 

bi-cubic patches and possesses first-order (G1) geometric continuity 

globally, i.e., continuously varying unit normal. The surface is generated 

with a lofting (skinning) scheme on mid-body sections where the 

remaining stern/bow patches are the result of Gordon surface 

constructions on the corresponding sections, waterlines and/or stern/bow 

profile parts. The deviation between the two CAD models below the 

design waterline, measured in terms of integral geometric characteristics, 

is indeed very small, i.e., wetted-surface deviation: 0.076%, volume 

deviation: 0.055%, centroid deviation: (-0.010, 0.000, -0.037)%. 

 

 

Table 1. Main particulars of the KCS ship 

 scale 

ratio 

Lpp 

(m) 

Lwl 

(m) 

Bw 

(m) 

D 

(m) 

T 

(m) 

 KCS ship 1/31.6 7.27 7.357 1.019 0.601 0.342 



 

 

 
Fig. 1: Original CAD model of the KCS ship model 

 

 

 
Fig. 2: Rebuilt CAD model of the KCS ship model  

 

Meshing in the 2-phase flow region is undertaken by the adopted CFD 

solver enabling us to create trimmed hexahedral grids and prism layers 

along walls. Trimmed grids allow anisotropic local refinement around the 

hull and the free-surface. Representative 2D intersections of the 

developed meshes with appropriate planes are given in Figs. 3 to 6 while 

Tables 2 and 3 provide mesh-size information.  

 

 

 
Fig. 3: Top-view of the mesh around the Wigley hull, showing different 

levels of refinement in the Kelvin-angle cone. 

 

 
Fig. 4: Transverse intersection of the mesh around the midship section 

of the Wigley hull, showing local refinement near the free-surface. 

 

Table 2. Fine-mesh information of the Wigley ship 

min. element size 0.06 (m) 

max element size 0.48 (m) 

# elements 1,648,435 

 

 

 
Fig. 5: Top-view of the mesh around the KCS hull, showing different 

levels of refinement in and around the Kelvin-angle cone. 

 

 

 

 
 

Fig. 6: Transverse intersection of the mesh around a stern section 

(upper) and a center-plane intersection of the mesh around the bulbous 

bow (lower) of the KCS hull. 

 

Table 3. Fine-mesh information of the KCS ship 

min.element size 0.056 (m) 

max element size 0.896 (m) 

# elements 2,115,022 

 

Taking into account the symmetry of the flow with respect to the centre 

plane, the axes-aligned bounded boxes, used for by the CFD solver as 

computational domain, is the box [-5L,2.5L]x[0L,3.75L]x[-3.75L,2L] for 

the Wigley hull and the box [-2.47L,2.47L]x[0L,2.47L]x[-2.47L,1.24L] 

for the KCS ship hull, with L denoting the length of the corresponding 

hull. On the boundary of these computational boxes the typical boundary 

conditions in CFD problems are imposed, such as, inlet/outlet, wall, 

constant-pressure, symmetry boundary conditions, etc. 

  

In order to choose the appropriate element base size and turbulence 

model, CFD results will be compared against available experimental 

results for Froude number Fr=0.267 for the Wigley hull and Fr=0.26 for 

both the original and the rebuilt KCS hulls. For this purpose, the CFD 

tool is used to compute the  total force acting on the hull in the direction 

of its motion (x-direction) and then non-dimensionalised using the below 

formula, where AW is the static wetted surface area of the hull and U0 is 

the tow velocity. 
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Experimental results for the Wigley hull are available in (Ju 1983), where   

U0=1.67m/s, Aw=Cs•L(2D+B), Cs=0.661, and CT=4.16x10-3 where CT   

denotes the total-resistance coefficient. For the KCS hull: Aw= 9.4379 m2 

and U0=2.196 m/s. Appealing to (Kim et al 2001), we have that 

CT=3.557x10-3 while the frictional-resistance coefficient, CF, is 

calculated using the ITTC correlation line (ITTC, 2008a) resulting in CF 

=2.832x10-3. The following three tables summarise a grid sensitivity 

analysis of the three test hulls with respect to the base size of the mesh 

adopted by the CFD tool and the employed turbulence models. 

Refinement is based on the pattern coarse_size=√2 medium_size=2 

fine_size as recommended by ITTC (2008b).  Tables 4 and 5 indicate 

that, for the k-e turbulence model, percentage error decreases as we move 

from coarse to fine mesh, which is however achieved via a dramatic 

increase in time cost. For the KCS test case the significant decrease of 

percentage error should be attributed to the “alignment” of fine mesh with 

the “needs” of the turbulence model. On the other hand, the error seems 

to be mesh-invariant for the turbulence model of Table 6.  



 

Table 4.  Grid sensitivity analysis for the Wigley hull (Fr=0.267, k-ε 

turbulence model) 

grid 
base 

size(m) 

#cells 

(M) 
CT·103(error%) 

time 

(h/m) 

coarse 0.1200 0.48 3.83(-7.87%) 3/15 

medium 0.0850 0.77 3.90(-6.25%) 6/12 

Fine 0.0600 1.6 4.35(4.46%) 10 

experimental value: CT=4.16x10-3 , #cores=12 

 

Table 5. Grid sensitivity analysis for the KCS hull (Fr=0.26, k-ε 

turbulence model) 

grid 
base 

size (m) 

# cells 

(M) 
CT ·103(error%) 

time 

(h/m) 

coarse 0.1125 0.86 3.85(8.23%) 4/8 

medium 0.0800 1.7 3.78 (6.15%) 10/11 

fine 0.0560 2.1 3.54(-0.51%) 16/30 

experimental value: CT =3.557x10-3 , #cores=12  

 

Table 6. Grid sensitivity analysis for the KCS hull (Fr=0.26, Shear 

Stress Transport (SST) eddy viscosity model blending a variant of the k-

ω model in the inner boundary layer and a transformed version of the k-

ε  model in the outer boundary layer and the free stream) 

grid 
base 

size (m) 

# cells 

(M) 
CT ·103(error%) 

time 

(h/m) 

coarse 0.1125 0.86 3.79 (6.68%) 5/10 

medium 0.0800 1.7 3.74(5.03%) 8 

fine 0.0560 2.1 3.80 (6.70%) 16 

experimental value: CT =3.557x10-3 , #cores=12 

 

 

 
Fig. 7: Near-wall y+ values (expected to vary in the range 30-100) and 

the Kelvin wave-pattern distribution (fine base size, Fr=0.26 and k-ε 

turbulence model) 

 
Finally, the ensuing three figures illustrate the performance of the CFD 

solver for estimating the wave/total and residual resistance of the Wigley 

and KCS hull against experimental results provided in (Ju 1983) and 

(Choi et al 2011), respectively. The wave resistance estimate in Fig. 8 is 

obtained by subtracting from the computed total-resistance coefficient the 

viscous resistance approximated by (1+k)CF , where CF  is the well-

known ITTC-57 friction-resistance estimate and k=0.08, which is 

obtained by applying Prohaska’s method in conjunction with CFD total 

resistance estimates for small Froude numbers. Note that k=0.1 according 

to an experimental study available in (Ju 1983). As for Fig. 10, the CFD 

estimate of the residual resistance is obtained by subtracting from the 

total-resistance coefficient CT the frictional-resistance coefficient CF, 

evaluated again via the ITTC-57 formula. 

 

 
Fig. 8: Comparison of the wave-resistance CFD estimate against 

experimental results for the Wigley hull. 

 
Fig. 9: Comparison of the total-resistance CFD estimate against 

experimental results for the Wigley hull. 

 
Fig. 10: Comparison of the residual-resistance CFD estimate against 

experimental results for the KCS hull. 
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IGA-BEM WAVE-RESISTANCE SOLVER 

 

This paper follows the approach by Belibassakis et al (2013) based on the 

formulation by Brard (1972) and Baar and Price (1988). The ship-hull 

sails through an incompressible and inviscid fluid with a uniform velocity 

vector U=(-U,0,0). The flow is considered irrotational and a fixed-body 

coordinate system is used; see Fig. 11. The total velocity of the flow 

consists of the uniform velocity and the perturbation velocity due to the 

existence of the hull. The problem can be formulated by the weakly 

singular BIE, 
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where μ is the density of the source distribution on the hull surface, G is 

the Neumann-Kelvin Green’s function corresponding to a point source 

moving with velocity U on the undisturbed free surface. Furthermore,  G* 

is the regular part of Green’s function, k is the characteristic wave 

number, n is a vector normal to the boundary surface S on point P,

corresponds to the waterline and nx and τy are the vectors normal and 

tangent to the waterline respectively on point Q. 

 
Fig. 11: Fixed-body coordinate system 

 

The surface of the hull is represented as a tensor product multi-patch 

NURBs surface: 
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where 𝐝𝑖
𝑝

 are the control points of patch p, 𝑅i
𝑝

 are the standard rational B-

spline basis functions, t1, t2 are the knot values for each parametric direction 

𝒏
𝑝

= (𝑛1
𝑝

, 𝑛2
𝑝

)  where 𝑛1
𝑝

, 𝑛2
𝑝

 are the number of bases functions for each 

parametric direction. 

 

Following the concept of Isogeometric-Analysis (IGA) (Hughes 2005), the 

unknown source density distribution μ will be represented by using the 

same rational B-spline functions that were used for the ship hull surface: 
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where 𝜇𝐢
𝑝

are the unknown source density coefficients and 𝐥
𝒑

=

(li,1
𝑝

, li,2
𝑝

) where li,1
𝑝

, li,2
𝑝

 are the numbers of added knots for each parametric 

direction. The accuracy of this method depends on the number of the source 

density coefficients which are essentially the degrees of freedom (DoFs) of 

the numerical procedure. Consequently, a number of DoFs may be added 

by knot insertion given by 𝐥
𝒑

 in order to get a more accurate approximation 

of the solution. The total number of DoFs is given by  
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Eq. 15 will be numerically solved by applying a collocation point scheme 

where each collocation point 𝑃j
𝑝
 on the physical space corresponds to the 

so-called Greville abscissae Farin (1999) of the associated knot vectors. 

 

For each collocation point 𝑃j
𝑝
, the induced velocity factor can be 

evaluated by  
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where α is the determinant of the surface metric tensor. These factors 

represent the velocity at 𝑃j
𝑝

 induced by a source distribution of 

density 𝑅i
𝑝

(𝑡1, 𝑡2).  Evaluation of Eq. 19 can be achieved by assuming 

that each induced factor is introduced as: 
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The non-singular integrals are easily calculated by using standard 

quadrature methods. On the other hand, singular integrals are divided into 

three cases: 

 Far field: Quadrature methods are used as in the non-singular 

case. 

 Near-field: Transformation techniques are used as in Telles 

(1987) and (1994) 

 In-field: Cauchy – Principal Value integrals occur and are 

evaluated as in Mikhlin (1965). 

 

Integration of the non-singular parts when points P and Q approach the 

free-surface (z=0) becomes numerically unstable, as observed by 

Belibassakis et al (2013). As a result, the ship is considered to be furtherly 

submerged by dz=λ/α where λ is the characteristic wave length and α is a 

number associated with this artificial sinkage. α can be evaluated by 

numerical experimentation and its value varies for different hull shapes. 

 

 
The discrete form of BIE (Eq. 15) is 
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where 
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where 𝐮i
𝑞
 are the induced velocity factors and n is the unit vector normal 

to the boundary surface.  Convergence usually requires more degrees of 

freedom than those offered by the representation of the geometric model 

and thus, the NURBs bases may need refinement. In the context of this 



 

work, knot insertion has been applied (h-refinement) but degree elevation 

(p-refinement) or both knot insertion and degree elevation (k-refinement) 

may be utilised. 

 

After the linear system is solved, the velocity of each collocation point 

can be evaluated by 
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where U is the ship’s speed and u  is the induced velocity of collocation 

point 𝑃j
𝑝
 given by 
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And finally the wave resistance can be calculated by 
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where SW is the wetted surface of the hull,  nx is the x-component of the 

vector normal to the boundary surface S and Cp is the pressure coefficient 

given by 
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This method has been implemented for the Wigley and the rebuilt KCS 

hulls, presented in the previous section. An example of the pressure 

coefficient distribution on the Wigley hull for Fn=0.316 can be found in 

the below figure. In this connection it should be stressed that Cp is 

evaluated directly on the ship hull via the same set of bases functions used 

for building the CAD model of the hull.  

 
Fig. 12: Pressure coefficient distribution Cp over the Wigley hull for 

Fn=0.316 
 

 

 

 

COMPARISON & CONCLUSIONS 

 
Figures 9 and 10 collect CFD and IGA-BEM estimates of the wave-

resistance coefficient for the Wigley hull and the residual-resistance 

coefficient for the KCS hull. In the latter case, the IGA-BEM estimate for 

residual resistance is obtained by adding to the wave-resistance 

coefficient a viscous pressure correction term of the form kCF, where CF 

is the ITTC correlation line (ITTC, 2008a) and k is a form factor that, if 

not available from experimental data, can be estimated with the support 

of Prohaska’s method and the CFD tool.  One can generally assert that 

the IGA-BEM resistance curves are shape aligned with both the 

corresponding CFD curves and the experimental data with an average 

error of 6.4% for the wave resistance estimate over the Froude numbers 

for which experimental results are available. In this connection, the 

results of the present preliminary study towards the feasibility of 

developing a hybrid mid-cost optimisation framework that combines a 

low-cost IGA-BEM solver with the high-cost CFD one, are not 

discouraging. 

 

 
Fig.  13: Simulation & experimental results for the Wigley ship 

 

 
 

Fig. 14: Simulation and experimental results for the KCS ship 
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