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Abstract

We present a T-splines-based parametric modeller (TshipPM) for complex ship

forms, capable to provide smooth geometries at a low cost in comparison with

parametric modellers (PM) employing the standard NURBS representation. For

a given set of design parameters, we measure complexity via the number of de-

grees of freedom needed, i.e., the number of control points for representing the

geometry of each instance. TshipPM, presented here, is an improved version

of that in [1], enabling more flexibility for representing challenging areas of the

ship-hull geometry, such as bow, stern and the transition areas from mid-ship

towards forward and afterward perpendiculars. In this connection, the associ-

ated control-cage construction process, which maps the user-defined parameters

to the control points of the T-splines representation, is described in detail for

the forward transition part of the hull. Furthermore, TshipPM delivers in-

stances lying in the proximity of a parent hull, with deviation measured in

terms of moments (volume, volume centroid, moment of inertia) and sectional

area curve (SAC) distribution, which are used in ship design. Finally, TshipPM

is compared against a commercial PM, CAESES®, opting for its NURBS func-

tionality, with both PMs’ outputs compared against a parent container-ship

hull already used in the literature for CAD and CFD benchmarking purposes.

The employed comparison criteria include the common external parameters,
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the previously mentioned moments, the sectional area curve, Gaussian and sec-

tional curvatures for assessing surface and curve fairness, respectively, and the

Hausdorff distance for measuring the geometric distance between two hulls.

Keywords: CAD, Computer-Aided Ship Design, Parametric Modelling;

NURBS, T-splines

1. Introduction

Parametric Modellers (PM) play a crucial role in shape optimisation of engi-

neering systems, for they have to represent robustly and efficiently every solid

object. In general, a PM is an algorithmic scheme depending on a set of geo-

metric parameters referred to as external parameters, accessible to the user, the5

number of which determines the dimension of the design space associated with

the given PM. Attributing values to all members of this set, PM is expected

to deliver an acceptable instance of the shape to be optimised. Acceptabil-

ity is tested against the fundamental requirement that the bounding surface

of the generated object should be free from self-intersections. Furthermore,10

various application-stemming requirements have to be met, governed by shape

descriptors selected for evaluating the quality of the generated instance. Typi-

cal examples of such descriptors are the parametric or geometric continuity, the

fairness, i.e., non-oscillatory distribution of intrinsic geometric features, such

as curvature, torsion, Gaussian curvature, and integral characteristics, such as15

moments of various orders, e.g., volume, centroids, moments of inertia.

Adopting the timeline introduced by Prof. H. Nowacki [2], who pioneered in

Computer-Aided Ship Design (CASD) via coupling form parameters with the

then novel technology of B-splines [3], the research and user communities will

celebrate on 2020 the key developments of CASD since its inception about six20

decades ago. An early attempt for building a ship parametric model is due

to Lackenby [4] in which hull variants are obtained by modifying the pris-

matic coefficient, the center of buoyancy and the extent and position of the

cylindrical mid-body of a parent hull. This approach has been subsequently
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generalised towards expanding the geometric coverage and portability of the25

parametric model through the use of NURBS (Non-uniform rational B-splines),

which is the CAD (Computer-Aided Design) industrial standard for design-

ing and processing curves and surfaces; see, e.g., [5], [6], [7], [8] and [9]. As

a result, a number of PMs are currently available to ship-design practition-

ers, such as CAESES®2, CATIA®3, the Rhino3D-based GRASSHOPPER®4,30

MARIN/GMS®5, NAPA®6 and PARAMARINE®7.

NURBS-based technology is not however free of shortcomings when applied

to parametric modelling of complex ship forms involving many and functionally

critical regions of shape transition nature; see, e.g., [10]. One can attribute these

limitations to the underlying tensor-product character of NURBS, which implies35

the need for building smoothly connected (at least G1−continuous) NURBS

patches over areas with different shape characteristics (convex, flat, cylindri-

cal, saddle) and varying scale. As a result, it is not unlikely that designers

and engineers have to deal with highly complex NURBS models, involving large

populations of control points, which may also need costly healing intervention40

before feeding them to the solver and optimiser for shape optimisation. In order

to handle the challenge of seamless integration between parametric modelling

and shape optimisation, more generally, integrating CAD with CAE (Computer-

Aided Engineering), several alternative representations have been developed in

pertinent literature, including hierarchical splines [11], PHT-splines [12], LR-45

splines [13] and T-splines [14, 15], [16]. T-splines constitute a generalisation

of NURBS technology that removes several of NURBS deficiencies, e.g., en-

abling refinement without the need of adding redundant control points. Fur-

thermore, they have been successfully used in conjunction with Isogeometric

2https://www.caeses.com/
3https://www.3ds.com/
4https://www.grasshopper3d.com/
5http://www.marin.nl/
6https://www.napa.fi/
7https://paramarine.qinetiq.com/
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Analysis (IGA) in several areas of computational mechanics; see e.g., [1], [17],50

[18], [19], [20], [21], [22], [23]. IGA is a new methodology that eliminates the

need of geometry discretisation (meshing), as it is the case for standard FEM

(Finite Element Methods) and BEM (Boundary Element Method), enabling

a seamless and strong coupling between the geometry representation and the

solver 8.55

Regarding parametric modelling, T-splines technology is capable to develop

modellers for complex ship forms, which provide acceptable and smooth (at

least) G1− continuous geometries at the expense of lower complexity in com-

parison with PMs employing the standard NURBS-based technology. For a

given set of design parameters and their ranges, we measure complexity via the60

number of DoF (Degrees of Freedom) required for representing the geometry

of each instance, i.e., the number of control points involved in the two com-

peting representations. Since T-splines achieve to span the same design space

with considerable less DoF than NURBS, it is legitimate to assert that their

efficiency, expressed as the ratio of shape-richness over DoF, is higher than that65

of NURBS. Furthermore, it is worth noticing that DoF downsizing is beneficial

in the subsequent steps of shape optimisation, e.g., by decreasing analogously

the size of stiffness matrices involved in the adopted FEM/BEM solver.

In this paper we present and test TshipPM, an in-house developed PM for ship

design. TshipPM is based on T-splines functionality provided by Rhino3D®70

scripting language and Autodesk® T-splines plug-in. Our work extends that in

[1] along four directions:

� We provide the reader with the list of all physical (dimensional) parame-

ters that characterise the geometry of the instances created by TshipPM

along with a concise description of each one of them, their classification in75

8The reader interested in the theoretical foundations and research on the analytical prop-

erties of T-splines, e.g., dimension of T-splines spaces, linear independence of T-splines basis

functions, can appeal to an abundance of pertinent papers in the area of Computer-Aided

Geometric Design; see, e.g., [24], [25], [26].
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global and non-global categories and, finally, their functional interrelation,

which also involves the non-dimensional parameters; see §3.1.

� TshipPM enables a more flexible representation of ship hull in geometri-

cally challenging areas, namely bow, stern and the transition areas from

mid-ship towards the forward and afterward perpendiculars; see §3.2.80

� The paper illustrates a key feature of the control-cage construction process,

namely the mapping of the external parameters to the control points of

the T-splines representation, by describing it in detail for the forward

transition part of the hull; see §3.2.

� TshipPM is improved to deliver instances lying in the proximity of a par-85

ent hull with deviation measured in terms of moments (volume, volume

centroid, moment of inertia) and sectional area curve (SAC), which are

being used by ship designers; see §3.3.

In addition, TshipPM is compared against the commercial CAESES PM, by

comparing their outputs against a parent hull, the KCS container-ship hull [27],90

which has been extensively used by the research community for CAD and CFD

benchmarking purposes. The employed comparison includes the common exter-

nal parameters, the sectional area curve, the Gaussian and sectional curvatures

for assessing surface and curve fairness, respectively, and, lastly, Hausdorff dis-

tance; see §4.95

The rest of the paper is structured in four sections. The ensuing section (§2)

delivers a coarse comparison between T-splines, the representation underlying

TshipPM, and NURBS, used in the context of CAESES. Section 3 analyses the

structure of TshipPM regarding the parameters involved (§3.1), the building of

the control cage along with its link with the parameters and the resulting surface100

(§3.2), while §3.3 illustrates the robustness of TshipPM versus strong parameter

variations. Section 4, devoted to the comparison of TshipPM with CAESES,

consists of seven subsections: Firstly, a short introduction to CAESES PM

(§4.1) followed by a presentation of the external parameters which are common
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to both CAESES and TshipPM (§4.2), and then five subsections which compare105

the behaviour of the two modellers versus the criteria of moments (§4.3), the

sectional area curve (§4.4), the Gaussian (§4.5) and sectional curvatures (§4.6),

and the Hausdorff distance (§4.7). The paper ends with a discussion on the

presented material and proposed directions for further development (§5).

2. From NURBS to T-splines110

NURBS is the current geometry standard for representing curves, surfaces and,

to some extent, solids in CAD systems. T-splines is a generalisation of NURBS

representation for surfaces and solids with their main advantage over NURBS

being to allow a row of control points to terminate before reaching the boundary,

creating a hanging-node, as referred to in the FEM parlance. This hanging-node115

configuration in T-splines is called a T-junction. The locally rectangular control

mesh, where T-junctions exist, is called a T-mesh [14]. A control point PA ∈ R3,

and a control weight wA > 0 are assigned to every vertex of the T-mesh, where

the index A denotes a global control-point counter, A = 0, 1, 2, .., n, n ∈ N.

Focusing on odd-degree splines, which possess the “well known” minimum pseudo-

norm property (in engineering terms: linearised-elastic-energy minimisers), each

member of a T-splines basis can be associated in a one-to-one manner with each

of the control points. Assuming that RA,p(s, t) represents the Ath polynomial-

spline basis function of bi-degree p = 2ρ + 1, ρ = 1, 2, ..., for surfaces, the

resulting T-splines surface can be represented as:

c(s, t) =

n∑
A=0

PANA,p(s, t), (s, t) ∈ Ω ⊂ R2, (1)

where

NA,p(s, t) =
wARA,p(s, t)∑n
J=0 wJRJ,p(s, t)

. (2)

T-splines bases inherit the basic properties of NURBS bases as summarised120

below:

6



(i) partition of unity:
∑n
i=1NA,p(s, t) = 1 with (s, t) varying in a sub-

domain ω of the global domain of definition Ω ⊂ R2;

(ii) non-negativity: NA,p(s, t) ≥ 0 with (s, t) ∈ R2;

(iii) compact support:125

NA,p(s, t) = 0 if (s, t) /∈ [sA−(ρ+1), sA+(ρ+1)] × [tA−(ρ+1), tA+(ρ+1)]

(ρ = 1 for the typical bicubic case);

(iv) continuity: in the neighbourhood of a knot line of multiplicity k, NA,p(s, t)

is Cp−k continuous;

(v) convex-hull property: a T-splines
∑n
A=0 PANA(s, t), (s, t) ∈ ω̃ ⊂ R2,130

lies within the convex hull of the subset of control points PA, i = 1, ..., n,

for which the compact support of the corresponding basis functions inter-

sects ω̃;

(vi) affine invariance: a T-splines is invariant with respect to affine transfor-

mations;135

(vii) boundary-curve interpolation, via allocating appropriate multiplicity

at the boundary knots, and

(viii) linear independence for a topologically restricted subset of T-splines,

referred to as analysis-suitable T-splines, optimised to meet the needs for

both design and analysis; see, e.g., [28]).140

While in NURBS all basis functions are defined via the tensor product of two

1D global knot vectors, in T-splines a local knot vector is assigned to every basis

function, with each local knot vector having an association with the topology

of the whole patchwork of the object [19]. This difference enables T-splines to

permit T-junctions, while for the same refinement (knot insertion) shorter knot145

lines are generated. Fig. 1 illustrates the fundamental difference between a

NURBS mesh and a T-mesh. In this paper, due to the fact that it suffices for

the needs of our application to work with G1-continuous surfaces, we shall limit

our discussion to bicubic T-splines.

It is well known from CAD practice that NURBS need multiple patches to150

represent complex shapes, complicating the analysis and optimisation of the
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Figure 1: NURBS (left) knot lines lie on a global rectangular grid, while T-splines (right)

can form T-junctions due to locally defined knot vectors. Extraneous knot lines in NURBS

are depicted with black dotted line. Examples of parametric faces depicted in red diagonal

stripe pattern: one face (rightmost) with 5 vertices (four corner vertices and one T-junction

vertex) and two faces with four corner vertices. Note that all faces, in both the NURBS and

the T-splines mesh, are rectangular.

design. On the contrary, it is not unlikely that T-splines are capable to represent

the same shapes with a single patch. In addition, refinement with NURBS

generates superfluous control points, as NURBS must lie topologically on a

rectangular grid, which is not the case in T-splines due to the fact that they155

permit T-junctions. Although, T-splines are not totally free of superfluous

control points. Furthermore, in various cases, trimming of NURBS surfaces

cannot be avoided. A curve stemmed by trimming is generally not a NURBS

curve, therefore approximation is needed to represent it. On the other hand,

T-splines are able to represent such surfaces without trimming with the aid of160

T-junctions [29]. In addition, T-splines can produce a valid merging of multiple

NURBS patches into a watertight surface without gaps, see, e.g., Fig. 3 in [14].

Given a T-mesh in the parametric space and a valid knot-interval configuration,

we describe the process of creating the T-splines bicubic basis corresponding,

e.g., to the vertex V0 depicted in Fig. 2, as follows:165

(i) Starting from the vertex V0, the horizontal knot vector is obtained by
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marching towards each of the two horizontal directions until two sequential

edges or vertices are encountered. The corresponding univariate basis is

the cubic B-splineN0,3(s) defined on the local knot vector {s1, s2, s3, s4, s5}:

N0,3(s) ≡ N [s1, s2, s3, s4, s5](s). (3)

(ii) Create in directly analogous manner the univariate basis along the vertical

direction.

N0,3(t) ≡ N [t3, t4, t5, t6, t7](t). (4)

(iii) The product N0,3(s)N0,3(t) of the two univariate basis functions gives the

sought-for T-splines bicubic basis function corresponding to V0.

Note that a vertex in the parametric space corresponds to a specific control

point of the T-mesh in the physical space.

Figure 2: Constructing the T-splines basis function corresponding to the vertex V0 of a valid

T-mesh. The extents of the constituting univariate knot vectors are colored green, while the

boundary of the support of the resulting basis function is depicted as dashed polygonal line

colored red.

3. Parametric Modelling using T-splines170

In this section we outline the construction of a T-splines-based PM for ship hull

design, referred to as TshipPM. After a short introduction on the philosophy
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adopted for building the modeller, the section is structured in three subsec-

tions. Subsection 3.1 introduces the physical (dimensional) parameters along

with a concise description of each one of them, their classification in global and175

non-global categories and, finally, their interrelation via the non-dimensional

parameters. Subsection 3.2 is devoted to the process of defining the geometry

and connectivity (topology) of the control cage underlying the T-spline sur-

face. Additionally, we provide in detail for the forward transition part of the

hull the mapping of the user-specified parameters to the control points of the180

control cage. Finally, we illustrate the full output of TshipPM, i.e., control

cage and surface, for a container-ship hull and discuss the gains with respect

to the required number of control points when using T-splines versus NURBS

representation. The section ends with subsection §3.3 illustrating the robust-

ness of TshipPM via a set of geometrically valid instances resulting from strong185

parameters variations.

Our approach of constructing TshipPM is twofold: firstly to develop a PM

that is considerably more flexible in representing ship hulls than that in [1] and

secondly to provide instances lying in the proximity of a given parent ship hull

in terms of ship-design criteria such as up to 2nd order moments and SAC. For190

this purpose, TshipPM is equipped with the functionality to produce additional

transition curves, enabling a finer control of the geometry construction from

mid-ship towards forward (FP) and afterward (AP) perpendiculars, as well as

a more accurate representation of bow and stern. The above enhancements are

achieved at the expense of only three parameters in comparison to [1]. The195

number of control points increases by 45% (134 vs 196) in comparison to that

in [1], nevertheless the order of magnitude remains the same, O(102), i.e., well

below than that required when using NURBS, O(103).

3.1. Parameters: introduction and handling

TshipPM has been developed using Rhinoceros® scripting functionality, based200

on Visual Basic®, and employs Autodesk® T-splines plug-in® v.4.0 for Rhinoceros5®

3D to create T-splines surfaces using as input the control cage created by
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TshipPM. Rhinoceros5® 3D is a broadly used CAD software based on NURBS

for modelling curves, surfaces and solids. Autodesk plug-in adds T-splines

functionality to Rhinoceros which with the support of Rhino Script generates205

T-splines models. In analogy to the control polygon of curves, the geometry and

topology of the control cage influences decisively the shape of the underlying

T-splines surface to be generated. It is a network of linear edges connecting the

given control points, and in conjunction with the associated T-splines basis it

delivers the shape of the surface.210

TshipPM’s main purpose is to generate the control cage of a ship hull with the

aid of parameters of both external and internal character. It is currently relying

on 27 physical parameters Pi, i = 0, ..., 26, which characterise the geometry of

the control cage under construction. These are dimensional quantities and are

classified in global and non-global ones, the latter being further categorised in

5 groups, according to which part of the ship they belong; see Table 1. Besides

the first three physical parameters: P0 = Lwl (length of the waterline), P1 = B

(beam) and P2 = T (draft), the remaining physical parameters are defined

according to the following scheme:

Pi = P̂i · fi(P0, .., Pi−1), P̂i∈(0, 1), i = 3, ..., 26, (5)

where P̂i are the non-dimensional parameters and fi are affine functions of the

physical parameters. In matrix form the above relations can be represented as:

P′ = diag(P̂ )(AP + v), P′ = [P3, ..., P26]T , P̂ = [P̂3, ..., P̂26]T , (6)

where diag(P̂ ) denotes the diagonal matrix defined by the non-dimensional pa-

rameters P̂i and A is a rectangular matrix of block-triangular structure. Both

physical, Pi, and non-dimensional, P̂i, parameters are of external (user-visible)

nature. On the contrary, internal parameters are accessible only to the developer

and are deployed for shape stabilisation via retaining key shape characteristics of215

the type of the hull the designer is interested in. Their number varies, depending

on the complexity and the number of control curves which identify challenging
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areas of shape transition between mid-ship and the bow/stern areas of the ship.

Once parameters values are provided to the first three physical parameters and

the non-dimensional parameters, Autodesk T-splines plug-in is called using as220

input the control cage created by TshipPM to produce the final T-splines model.

Fig. 3 provides a representative diagram of the execution process.

Figure 3: Steps to create a TshipPM instance: we first attribute values to P0 = Lwl, P1 = B,

P2 = T and the non-dimensional parameters P̂i∈(0, 1), i = 3, ...26, which, alongside the

internal parameters, determine the control cage of the ship hull; TshipPM plug-in is then

called to produce the final instance.

Table 1: TshipPM parameters and groups; Pi’s: physical parameters

Pi’s Description Affine functions fi of

Global Parameters

P0=Lwl Waterline Length -

P1=B Beam -

P2=T Draft -

non-Global Parameters

Mid Part Parameters

P3=Mid L Length of Middle Body Lwl

P4=Mid Pos Longitudinal middle position Lwl, Mid L

of Middle Body

P5=Bilge R Bilge Radius B, T

Fwd Part Parameters

P6=BatFP Breadth at FP B

P7=FoS Fwd L Flat of Side Mid Pos, Mid L

P8=FoB Fwd L Flat of Bottom Mid Pos, Mid L

Continued on next page
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Table 1 – Continued from previous page

Pi’s Description Affine functions fi of

P9=FoS Trans Flat of Side at the T

transition of MidShip

to Fwd/Aft Part

P 10=FoB Trans Flat of Bottom at the B

transition of Midship

to Fwd/Aft Part

P 11=FP L fromMS Length from Mid Body to FP Mid Pos, Mid L,

Fos Fwd L

Aft Part Parameters

P 12=BatAP Breadth at AP B

P 13=BatAPLow Breadth at the bottom at AP B

P 14=FoS Aft L Flat of Side Lwl, Mid Pos, Mid L

P 15=FoB Aft L Flat of Bottom Lwl, Mid Pos, Mid L

P9=FoS Trans Flat of Side at the T

transition of MidShip

to Fwd/Aft Part

P 10=FoB Trans Flat of Bottom at the B

transition of Midship

to Fwd/Aft Part

P 16=AP L FromMS Length from Mid Body to AP Lwl, Mid Pos,

Mid L, Fos Aft L

Bow Parameters

P 17=Fwd Rise Rise of Fwd Part Bulb H

P 18=Bulb L Bulbous Length (from FP) Lwl

P 19=Bulb H Bulbous Height T

P 20=Bulb B Bulbous Width B

P 21=Bulb Tip Height Height of tip of Bulbous Bulb H

Continued on next page
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Table 1 – Continued from previous page

Pi’s Description Affine functions fi of

Stern Parameters

P 22=Transom H Transom Height T

P 23=Transom B Transom Breadth BatAP

P 24=Stern L Stern Length from AP Lwl, Mid Pos,

Mid L, FoS Aft L,

AP L FromMS

P 25=Tube L Tube Length AP L FromMS

P 26=Tube D Tube Diameter Transom H

TshipPM favours the use of non-dimensional parameters, where possible, in

order to handle effectively the interdependency that occurs among them, as it is225

the case in (4). For example, if we define ship’s draft T as a physical parameter

the permissible value would be upper-bounded by the ship’s depth D. On the

other hand, by employing the ratio parameter: r = T
D , its valid range bounds

are 0 and 1 regardless of ship’s depth value, which permits a simpler checking

algorithm for the validation of input parameter values. The benefits of this230

approach are more evident when we have a series of interdependent parameters,

as in the case of ship’s mid-ship part definition in the example below.

Let us consider a ship of length l, and two points defining the starting and

terminating points of the mid-ship part, respectively. Furthermore, let lS and

lE denote the corresponding distances of each of these points from the common235

origin O; see Fig. 4. If we were to implement lS and lE as physical parameters,

we would have to include validation checks so that, for example, the inequality

0 < lS < lE < l stands true, whereas, by introducing ratio parameters rE = lE
l

and rS = lS
lE

, we ensure the right order of the corresponding points by simply

bounding both ratios in (0,1); see Fig. 4. Obviously, in this case, no further240

validation checking is required.
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Figure 4: Relation between physical (dimensional) and non-dimensional parameters.

Thus, the use of non-dimensional parameters, ranging in subintervals of (0, 1),

supports the robustness of TshipPM, by avoiding the allocation of values to

parameters that would result in delivering non-valid geometries suffering e.g.,

from self-intersections. These subintervals are currently pre-specified by the de-245

veloper via experimentation with the available parent hulls. Figs. 5-7 illustrate

all physical parameters used in TshipPM. In the rest of the text the term pa-

rameters will be used for referring only to the three physical and the twenty-four

non-dimensional parameters, denoted by symbols with a wide hat symbol, e.g.,

B̂ulb L denotes the non-dimensional parameter corresponding to the physical250

parameter of bulbous-bow length, Bulb L.

Figure 5: TshipPM input parameters for Fwd Part and Aft Part.
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Figure 6: TshipPM Bulb input parameters.

Figure 7: TshipPM Stern L, BatAP and BatAPLow input parameters.

3.2. From parameters to the control cage and the output surface

The shape of a typical ship hull shape consists of three main parts, namely,255

a) the mid-ship, which is the part bounded by the FP and AP, b) the bow,

which extends from FP to the forward end and c) the stern, extending from AP

and afterwards. To describe adequately the main parts of a ship hull, global

physical parameters are needed, such as Lwl, B and T, as well as mid-ship,

consisting of the cylindrical middle part (Mid Part), the forward (Fwd Part)260

and the afterward (Aft Part) parts. This multi-level segmentation of the ship

hull to the aforementioned parts should be reflected on the control cage; see
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Figs. 8 and 9.

Figure 8: Typical segmentation of a ship hull. Main parts are mid-ship, bow, and stern.

Figure 9: Segmentation of mid-ship, consisting of the Cylindrical Middle Part, Forward and

Afterward Parts.

In order to give shape to the bounding surfaces of a ship hull and guarantee a

fair transition from a part to its neighbouring ones, control curves are required.265

Control curves are of two types, namely, bounding curves and transition curves.

Bounding curves, such as bow (Bow Prf Crv) and stern profile (Stern Prf Crv)

curves, are used to specify the boundaries of the ship hull, while transition curves

are employed to indicate the transition between different parts and/or further

segmentation of the same part. Pre-images of these curves on the control-cage270

level are introduced by the so-called control-cage paths as illustrated in Fig. 10.

Figure 10: Examples of control-cage paths of transition type (left: from flat of side to forward

part, depicted in black) or boundary type (middle: stern boundary, right: bow boundary,

depicted in red).
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Transition from one part to another is materialised via external parameters.

Determining control-cage paths, though, requires both internal and external

parameters. An example is given in Fig. 11 where it is assumed that the extent

of Mid Part is already fixed. Then, the external parameter controlling the lon-275

gitudinal transition from the end of Mid Part to the boundary Fwd Trans Crv

of FoS Fwd L, is parameter ̂FoS Fwd L, while Fwd Trans Crv makes use of

parameters FoS Trans, Fob Trans and the internal parameter α.

Figure 11: Control-cage path Fwd Trans Crv (red) and its defining parameters.

Let us now describe in more detail the process adopted by TshipPM for map-

ping user-defined parameters to the control points of the control cage for the280

configuration depicted in Fig. 12, associated with the challenging transition

area from the mid-body towards FP. To proceed, we assume that the control

points M1,i = (Mx
1,i,M

y
1,i,M

z
1,i)

T , i = 0., ..., 5, of the L-shaped control polygon

M1 (depicted in black) have been calculated, adopting the choices made in Fig.

6 in §2 of [1], and we aim to compute the control points of the first two Forward285

Transition Curves (four in total), namely FT C0 (depicted in red) with control

points P0,i, i = 0, 1, .., 5 and FT C1 (depicted in green) with P1,i, i = 0, 1, .., 5.

TshipPM calculates the location of the afore mentioned control points using the

below formulae (7)-(11) for FT C0 and (12)-(16) for FT C1.
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P0,0 = M1,0 − (FoS Fwd L, 0, 0)T , (7)

P0,1 = P0,0 − (0, 0, a0 · FoS Trans)T , (8)

P0,2 = (Mx
1,0 − a1 · FoB Fwd L, Oy − a2 · FoB Trans, Oz − T )T , (9)

P0,3 = (P x0,2, O
y − a3 · FoB Trans, P z0,2)T , (10)

P0,4 = (P x0,3, O
y − B

2
, P z0,3)T . (11)

P1,0 = P0,0 − (a4 · FP L FromMS, 0, 0)T , (12)

P1,1 = (P x1,0, P
y
1,0 − a5

B

2
, Oz − a6 · T )T , (13)

P1,2 = (Mx
1,0 − a7 · FoB Fwd L, Oy − a8 · FoB Trans, Oz − T )T , (14)

P1,3 = (P x1,2, O
y − a9 · FoB Trans, P z1,2)T , (15)

P1,4 = (P x1,3, O
y − B

2
, P z1,3)T . (16)

where O = (Ox, Oy, Oz)T denotes the origin (0, 0, 0)T of the coordinate system,290

and ai, i = 0, 1, .., 9, are internal parameters with a1 < a7, a2 < a3, and

a8 < a9. Regarding the functionality of these inequalities, they control the

relative spatial positioning of control points, e.g., a1 < a7, secures that P1,2

is placed towards FP and after P0,2; see Fig. 12. Otherwise, in case this

inequality is violated, it is not unlikely that the control cage will suffer from295

self-intersections as a result of the fact that ‖
−−−−−−→
M1,2P1,2‖ < ‖

−−−−−−→
M1,2P0,2‖. In

another example, if inequality a2 < a3 is not satisfied, then the control polygon,

depicted in red in Fig. 12, will be afar from the desired shape, which is that

of a typical convex ship section. Furthermore, formulae (7)-(16) readily imply

that mapping user-defined parameters to control points is done through linear300

mappings.

Once the control polygons of each of the transition curves FT Ci, i = 0, 1, are

defined, the connectivity between them and the vertices of the L-shaped control

polygon M0 is set as shown in Fig. 12. Despite the fact that all three con-

trol polygons do not share the same number of points, T-splines functionality305
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Figure 12: Control points of the L-shaped polygonal lineM1 (depicted in black) and the first

two Forward Transition Curves, FT C0 (depicted in red) and FT C1 (depicted in green).

enables us to circumvent this issue by introducing T-junctions, in this case at

M1,3. Working in this way we are able to retain, in most cases, quadrilateral

topology, i.e., create quadrilateral elements, with each of their control points

having valence-4, to reduce the complexity and increase the quality of the de-

veloped surfaces.310

In cases where a control point is necessary to be connected with fewer or more

than 4 edges, extraordinary points have to be introduced. An example of such a

control point of valence-5 is shown in Fig. 13. b0 is an extraordinary point on

the Forward Perpendicular Transition Curve (depicted in magenta), connected

with b1 of the first Bulb Curve (depicted in red).315

The computed control cage is then fed to the T-splines plug-in, which in its

turn delivers the corresponding ship hull instance. Figs. 14-16 depict a typical

output with hollow rectangles indicating the control points PA, A = 0, ..., n, of

the obtained T-splines hull surface along with their connectivity (dashed lines),

while solid lines constitute the mapping of T-mesh edges on the surface.320

Considering the control points PA, A = 0, ..., n, as the DoF of the surface
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Figure 13: An example of a valence-5 extraordinary point. b0 is located on the Forward

Perpendicular Transition Curve (depicted in magenta) and is connected with b1 of the first

Bulb Curve (depicted in red).

representation (1), their population of which (= n + 1) is a measure of the

computational complexity of the resulting surface. For the surface in Figs. 14-

16, n+ 1 = 196. On the contrary, DoF of parent ship hull and CAESES’s model

(the latter exported as an igs file from CAESES) is approximately 8,000 and325

200,000 respectively. Since every T-splines can be accurately represented as a

NURBS multi-patch surface, one can experience the DoF overloading effect of

NURBS by transforming T-splines into NURBS and count the control points.

For the surface in question this operation leads to a multi-patch NURBS surface

with approximately 24,500 control points.330

The quality of the outcome is assessed against a set of criteria of geometric (a-c)

and ship-design (d-e) nature:

(a) GUI-aided checking of self-intersection failures;

(b) Smoothness: at least G1-continuity;

(c) Fairness: smooth distribution of curvatures, proper sign of curvatures, e.g.,335

nearly zero Gaussian curvature in the area of the cylindrical mid-part;

(d) Deviation from prescribed kth-order moments, e.g., volume (k = 0), centroid

(k = 1), moment of inertia (k = 2);
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(e) Deviation from a prescribed SAC.

Figure 14: TshipPM output: perspective view from the bow with control points and on-surface

mappings of T-mesh edges.

Figure 15: TshipPM output: perspective view from the stern.

Figure 16: TshipPM output: side view.

3.3. Behaviour of TshipPM against strong parameters’ variation340

The question about which parameter values may lead to non-valid models, i.e.,

surfaces with self-intersections, is a “long standing” problem in parametric CAD

design, which is easy to state but difficult to solve; see, e.g., [30]. To provide

an experimental indication of the robustness of the constructed PM, Figs. 17
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to 24 collect TshipPM’s response to strong variations of 3 design parameters,345

namely the bilge radius (Bilge R), the bulb length (Bulb L) and the bulb height

(Bulb H). Variation is measured in percentage of the values corresponding to

a parent hull, namely, the “well known” container-ship model KCS used in the

literature for CAD and CFD benchmark purposes.

In particular, Fig. 17 and 18 depict TshipPM’s response to Bilge R decrease350

and increase by 30% respectively. Figs. 19-22 illustrate deviations of Bulb H

and Bulb L up to ±20%. Finally, Fig. 23 shows a TshipPM instance where

bulb H has been decreased by 60%, while Fig. 24 is an instance where both

Bulb H and Bulb L have been decreased by 50%.

4. Comparison with CAESES355

This section focuses on comparing the performance of TshipPM and a well estab-

lished commercial PM for ship design, namely CAESES [31]. This comparison

will use the container-ship model KCS [27] as parent hull and the following

criteria:

1. Common external parameters;360

2. kth-order moments (k = 0, 1, 2), i.e., volume, volume centroid, moment of

inertia;

3. SAC;

4. Gaussian curvature as a measure of surface shape and fairness;

5. Sectional curvature for assessing the shape and fairness of sections at specific365

longitudinal positions;

6. Hausdorff distance.

4.1. CAESES parametric modeller

CAESES adopts the classic naval architecture approach: a set of longitudinal

lines – so-called basic curves – is laid out from which all information can be370

retrieved to subsequently establish the geometry of the ship hull. This is done

in a 3-stage process:
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Figure 17: Decreasing ̂Bilge R by 30%. Figure 18: Increasing ̂Bilge R by 30%.

Figure 19: Decreasing B̂ulb H by 20%. Figure 20: Increasing B̂ulb H by 20%.

Figure 21: Decreasing B̂ulb L by 20%. Figure 22: Increasing B̂ulb L by 20%.

Figure 23: Decreasing B̂ulb H by 60%.
Figure 24: Decreasing both B̂ulb L

and B̂ulb H by 50%.
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1. Parametric design of a suitable set of basic curves such as deck profile,

design waterline, flat of side (FoS) and flat of bottom (FoB), centerplane

profile etc. The basic curves are built in agreement with a few promi-375

nent transversal curves, e.g., the main frame section, the transom, and,

optionally, additional sections in the forward or afterward body.

2. Parametric modelling of design sections derived from the basic curves.

3. Generation of a set of B-spline surfaces that interpolate or closely approx-

imate the design sections.380

Curve design in CAESES is based on the concept of the F -spline curves [32].

These curves are formulated considering a base of 4 parameters including the

area, securing an inherently smooth and convex behaviour and reducing the

need for further heuristic computations. Furthermore, Property Distribution

Curves (PDC) are introduced, representing the variation of important geomet-385

ric properties of the hull form along, e.g., the longitudinal direction. Typical

examples of PDC include SAC, the distribution curve of rise at the bottom, the

design-waterline, deck profile and others.

In the present study, CAESES has been employed using 31 input (external in

the terminology of TshipPM) parameters, depicted graphically in Fig. 25 and390

categorised in Table 2 in three groups, namely Main Dimensions, XmainFrame,

Forebody and Aftbody parameters.

Figure 25: CAESES input parameters.

25



Table 2: CAESES Parameters and Groups

Parameter Description

Main Dimensions

Lpp Distance between perpendiculars

Beam Beam (breadth) of ship

Draft Design waterline of the ship

z Deck Deck height of the ship

y MaxFOB HalfBeam · y MaxFOB Fore Factor

y MaxFOB Fore Factor factor used in y maxFOB

z MinFOS Height · zMinFOS Fore Factor

z MinFOS Fore Factor factor used in z MinFOS

XmainFrame

x MainFrame x position of the largest section area

x FP · x MainFrame Factor

x MainFrame Factor factor used in x MainFrame

Forebody

x Fp x position of Forward Perpendicular

x Peak x position of end point

of Bow Overhang

x BulbTip x position of Bulb Tip

x FOB Fore x position of end point

x FP · x FOB Fore Factor

x FOB Fore Factor factor used in x FOB Fore

x FOS Fore x position of end point

x FP · x FOS Fore Factor

x FOS Fore Factor factor used in x FOS Fore

z Fp z position of highest point

of the Forward Perpendicular

z Bulb Bulb Height

Continued on next page
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Table 2 – Continued from previous page

Name of Parameter Association to

Dimensional Parameters

z BulbTip Bulb Tip Height

L Bulb Length of Bulbous Bow

L BulbToFp Distance from Bulbous Bow Tip to FP

L BowOverhang Length of Bow Overhang

Aftbody

x FOB Start x position of starting point of Flat of Bottom

x FP · x FOB Start Factor

x FOB Start Factor factor used in x FOB Start

x FOS Start x position of starting point of Flat of Side

x FP · x FOS Start Factor

x FOS Start Factor factor used in x FOS Start

x Boss x position of Shaft

x Transom x position of Transom

z Transom Transom Height

Dshaft Diameter of Shaft

In the ensuing subsections §§4.2-4.6 we present and discuss the results obtained

from using TshipPM and CAESES for approximating the KCS parent hull.395

For ease of reference we call PM1 and PM2 the models produced by TshipPM

and CAESES, respectively. All calculations have been conducted with models

spatially located as shown in Fig. 26, with the tip of the bow overhang (most

front part of the Lwl) being located at the start of the coordinate system.

4.2. Common parameters400

Though the adopted geometric representation and the parametric-modelling

methodology employed by TshipPM and CAESES are different, the two PMs
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Figure 26: Coordinate system and models’ orientation.

do share many common input parameters. In particular, the modellers have

15 common parameters (56% of TshipPM’s and 48% of CAESES’s parameters)

collected in Table 3.405

Table 3: TshipPM-CAESES common-parameter list

CAESES TshipPM

Parameter Parameter

Global Parameters

Beam B

Draft T

Middle Part Parameters

z MinFOS Bilge R

x MainFrame Mid Pos

Forward Part Parameters

x Fp FP L FromMS

x FOB Fore FoB Fwd L

x FOS Fore FoS Fwd L

z Bulb Bulb H

L BulbToFp Bulb L

Afterward Part Parameters

x FOB start FoB Aft L

x FOS start FoS Aft L

x Boss Tube L

Continued on next page
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Table 3 – Continued from previous page

x Transom Stern L

z Transom Transom H

Dshaft Tube D

4.3. Moments comparison

In this subsection we present the results from comparing volumetric moments

up to 2nd order, provided by PM1 and PM2 against the KCS parent hull.

Comparison has been conducted both for the whole ship hulls and for their410

segmented parts, namely forward (x ∈ [−6.7m, 102.8m]), middle part (x ∈

[102.8m, 146.3m]) and afterward part (x ∈ [146.3m, total length]). PM1 and

parent ship hull moments have been calculated via Rhino3D, while PM2 mo-

ments have been calculated using ANSYS Fluent®. Negative differences indi-

cate that the parent ship hull value is smaller than the corresponding value of415

PM1 or PM2 and vice versa. The obtained values and resulting deviations are

collected in Tables 4 and 5.

Focusing on the whole ship hull, volume, volume centroid, and moment of in-

ertia for both PM1 and PM2 lie very close to those of the parent hull, with

differences less than 1%. For volume, PM1 overestimates about 0.119%, while420

PM2’s estimate differs by 0.073%. As far as centroid location is concerned,

PM1’s estimate deviates by 0.063% and −0.090% along the x− and z−axis re-

spectively, while PM2’s centroid estimate exhibits a variation of 0.038% and

−0.001%, correspondingly. For both parametric models and the parent hull,

the y-coordinate of centroid is zero in single precision accuracy. In terms of425

inertia, PM1’s estimate differs from that of the parent hull by δIx = 0.180%,

δIy = −0.514% and δIz = −0.496%. For PM2, the corresponding quantities

vary by 1.288%, 0.756%, 0.767%.

For the segmented hull, PM1 shows satisfactory behaviour for all calculated

moments and for all three segments as differences of less than 1% occur for430
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all calculated moments. Variations of more than 1% occur for the middle and

afterward parts of PM2, as far as 2nd order moments are concerned. Especially

at the middle part δIx = 2.449%, δIy = 2.194%, δIz = 2.007%, while for

afterward part corresponding deviations are 1.675%, 1.644%, and 1.649%.

Table 4: Comparison of moments among parent ship-hull, PM1 and PM2 models (full model).

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

x: 118.407 Ix: 3,892,800

Parent Ship 52,053 y: 0 Iy: 130,372,480

z: -4.894 Iz: 133,304,065

x: 118.332 Ix: 3,885,819

PM1 52,115 y: 0 Iy: 131,046,043

z: -4.899 Iz: 133,967,881

x: 118.290 Ix: 3,843,304

PM2 52,015 y: 0 Iy: 129,394,600

z: -4.896 Iz: 132,289,720

Difference (%) x: 0.063 Ix: 0.180

PM1 vs -0.119 y: 0 Iy: -0.514

Parent Ship z: -0.090 Iz: -0.496

Difference (%) x: 0.038 Ix: 1.288

PM2 vs 0.073 y: 0 Iy: 0.756

Parent Ship z: -0.001 Iz: 0.767

Notes: Inertia has been calculated with respect to Centroid Coordinate Axis. Negative

percentage indicates that parent ship-hull’s value is lower than that of PM1/2, vice versa for

positive values.
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Table 5: Comparison of moments among parent ship-hull, PM1 and PM2 models.

(Segmentation at x1 = 102.8m, and x2 = 146.3m)

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

Forward Part

x: 66.570 Ix: 1,281,763

Parent Ship 20,139 y: 0 Iy: 12,289,833

z: -4.902 Iz: 13,213,492

x: 66.365 Ix: 1,273,039

PM1 20,167 y: 0 Iy: 12,306,184

z: -4.900 Iz: 13,220,480

x: 66.554 Ix: 1,273,460

PM2 20,100 y: 0 Iy: 12,266,331

z: -4.896 Iz: 13,183,772

Difference (%) x: 0.309 Ix: 0.685

PM1 vs -0.136 y: 0 Iy: -0.133

Parent Ship z: 0.037 Iz: -0.053

Difference (%) x: 0.025 Ix: 0.652

PM2 vs 0.198 y: 0 Iy: 0.192

Parent Ship z: 0.131 Iz: 0.225

Middle Part

x: 123.972 Ix: 1,393,339

Parent Ship 14,993 y: 0 Iy: 2,550,009

z: -5.308 Iz: 3,658,949

x: 123.998 Ix: 1,402,369

PM1 15,034 y: 0 Iy: 2,565,262

z: -5.322 Iz: 3,681,224

x: 123.974 Ix: 1,360,028

Continued on next page
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Table 5 – Continued from previous page

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

PM2 14,963 y: 0 Iy: 2,495,260

z: -5.302 Iz: 3,586,954

Difference (%) x: 0.021 Ix: -0.644

PM1 vs -0.273 y: 0 Iy: -0.595

Parent Ship z: -0.261 Iz: -0.605

Difference (%) x: -0.002 Ix: 2.449

PM2 vs 0.198 y: 0 Iy: 2.194

Parent Ship z: 0.102 Iz: 2.007

Afterward Part

x: 175.178 Ix: 1,212,449

Parent Ship 16,919 y: 0 Iy: 6,415,948

z: -4.519 Iz: 7,319,577

x: 175.260 Ix: 1,205,310

PM1 16,913 y: 0 Iy: 6,411,417

z: -4.521 Iz: 7,308,097

x: 175.162 Ix: 1,192,473

PM2 16,951 y: 0 Iy: 6,312,204

z: -4.512 Iz: 7,200,846

Difference (%) x: -0.047 Ix: 0.592

PM1 vs 0.037 y: 0 Iy: 0.071

Parent Ship z: -0.049 Iz: 0.157

Difference (%) x: 0.009 Ix: 1.675

PM2 vs -0.187 y: 0 Iy: 1.644

Parent Ship z: 0.161 Iz: 1.649

Notes: Inertia has been calculated with respect to Centroid Coordinate Axis. Negative435

percentage indicates that parent ship-hull’s value is lower than that of PM1/2, vice versa for
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positive values.

4.4. SAC comparison

Plotting and comparing SAC among different ship hulls is a useful tool for

evaluating the longitudinal distribution of sectional area values (SAV) as well440

as extracting the longitudinal positions where the major variations of SAVs

exist. Fig. 27 illustrates SAC of PM1 (red curve), PM2 (blue curve) and parent

(green curve) ship hulls. It also shows the difference of SAV between PM1 and

parent hull (magenta curve), as well as between PM2 and parent (black curve)

with the maximum deviation |SAVPM1−SAVparent|max = 6.51m2 occurring at445

x = 50m, and |SAVPM2 − SAVparent|max = 3m2 occurring at x = 50m which

corresponds to 1.9% and 8� of the maximum SAV respectively. It is also worth

noticing that the red curve is constant along the interval 102.8≤x≤146.3 as a

result of the fact that TshipPM imposes by construction a strictly cylindrical

part along the middle part of the hull and, as a result, possesses constant SAV450

in this interval.

Figure 27: SAC comparison among PM1 (red curve), PM2 (blue curve) and the parent hull

(green curve): the magenta curve depicts the deviation SAVPM1 - SAVPM2 with the absolute

maximum deviation occurring at x = 50m (dashed line).
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4.5. Gaussian-curvature comparison

Gaussian curvature is an intrinsic geometrical property of surfaces used by de-

signers to evaluate the fairness of the boundary of a 3D object and locate de-

ficiencies versus the anticipated shape of the surface under consideration. The455

Gaussian curvature K(P) at a point P of a smooth surface can be expressed as:

κ(P) = κ1(P) · κ2(P) (17)

where κi, i = 1, 2 are the principal curvatures at P.

In order to use a color map capable to easily reveal sign variations of the Gaus-

sian curvature, a short interval around κ = 0 has been selected, i.e., [−10-6, 10-6].

Blue color illustrates areas of negative κ, i.e., principal curvatures are of oppo-460

site sign, implying that the surface has locally a saddle-like (non-convex) shape.

On the contrary, red color implies that both principal curvatures share the same

sign, equivalently the surface is locally convex resembling the shape of a sphere.

Finally, green color is used when κ = 0, in which case the surface is cylindrical

or flat. The color map range is illustrated in Fig. 31 and it is the same for Figs465

28-33.

Figs. 28-31 depict several (side, bow, stern and bottom) views of the Gaussian

curvature plot of the surfaces of PM1 and PM2. In general, one can easily spot

extraneous Gaussian-curvature sign variations in several areas of both plots.

A more focused view, though, reveals that the Gaussian-curvature distribution470

of PM2 exhibits more extraneous small-scale oscillations between red (convex)

and blue (non-convex) areas; see; Figs. 32-33. This may be attributed to the

fact that CAESES constructs multi-patch NURBS surfaces of high complexity,

consisting of many tiny patches, resulting to unevenly spaced isoparametric

curves, and thus it is more challenging to achieve fairness in transition regions.475

For example, in Fig. 32 one can observe curvature oscillations at the mid-

and bottom-stern which consist of a total of 50 patches. Nevertheless, Fig. 31

indicates that, in large scale, the shape of the flat of side/bottom provided by

PM2 is better than that of PM1. In this connection it should be noted that
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TshipPM imposes by construction a strictly cylindrical parallel middle part,480

indicated by the green rectangle in Fig. 31.

Figure 28: Side view of Gaussian-curvature plot of Fwd Part (up) and Aft Part (bottom) of

PM1 (left) and PM2 (right).

Figure 29: Bow view of Gaussian-curvature plot of PM1 (left) and PM2 (right).

Figure 30: Stern view of Gaussian-curvature plot of PM1 (left) and PM2 (right).

Figure 31: Bottom view of Gaussian-curvature plot of PM1 (top) and PM2 (bottom). Color

map is the same for Figs 28-33
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Figure 32: Small-scale extraneous oscillations of the Gaussian-curvature distribution of PM2:

side (top) and stern view (bottom).

Figure 33: Small-scale extraneous oscillations of the Gaussian-curvature distribution of PM2:

bottom view.

4.6. Sectional-curvature comparison

By sectional curvature we refer to the curvature distribution of the planar curves

obtained by intersecting the ship hull with planes vertical to its longitudinal

axis. When selected at prescribed distances, called stations, the resulting family485

of curves is referred to as the body plan of the hull. In design practice, the

fairness of these sections is evaluated via their curvature distribution depicted

as a function of a parameter running along the curve or in the porcupine format,

adopted herein. Figs. 34-37 indicate that PM1 and PM2 provide, in general,
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fair sections which are also free from extraneous inflection points, with exception490

to PM2’s sections at x = 146.3m and x = 205.3m, as shown in Fig. 38.

Figure 34: PM1 (left), and PM2 (right) porcupine plots of section at x = −1m.

Figure 35: PM1 (left), and PM2 (right) porcupine plots of section at x = 102.8m.

Figure 36: PM1 (left), and PM2 (right) porcupine plots of section at x = 146.3m.
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Figure 37: PM1 (left), and PM2 (right) porcupine plots of section at x = 205.3m.

Figure 38: Extraneous inflection points of PM2 for sections at x = 146.3m (left) and x =

205.3m (right).

4.7. Hausdorff distance comparison

In this subsection we adopt the concept of Hausdorff distance for comparing

PM1 and PM2 in terms of their geometric deviation from the parent hull (KCS).

Using the MeshLab® tool 9 and a dense sampling on the surfaces involved

(3.6×105 points), Fig. 39 depicts the distribution of deviation δ(x) of PM1 and

PM2 from the parent hull, defined as:

δi(x) = min
y∈PKCS

d(x,y), x ∈ PMi, i= 1,2, (18)

where d(x,y) denotes the Euclidean distance between two points x and y. The

color map ranges over [0, 0.6], which covers the maximum deviation measured

for PM1 (top pair in Fig.39). The mean deviation is 0.078m for PM1 and495

0.016m for PM2 (bottom pair in Fig.39). Finally, the Hausdorff distance be-

tween PM1/PM2 and the parent hull is equal to 0.6m/0.24m respectively.

The obtained results indicate a considerably better behaviour for PM2, at-

tributed to the large DOF (196 for PM1 vs O(105) for PM2. PM1’s significant

9http://www.meshlab.net/
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deviations occur in two areas, namely the transition area from mid-ship towards500

the afterward part of the hull, and the stern area. Large deviations in the first

area are attributed to the fact that PM1 surface changes abruptly from the

cylindrical middle body towards, especially, the afterward part; see also Fig. 31

(top). As for the deviation in the stern area, PM2 performs better but at the

expense of fairness; see Fig. 31 (bottom).505

Figure 39: Distance plot of PM1 (top pair) and PM2 (bottom pair) with respect to the parent

ship hull.

5. Discussion and Future Work

In this paper a T-splines parametric modeller (PM) for ship hulls is presented

analytically and tested versus a commercial PM (CAESES). TshipPM is an

improved version of that in [1], enabling more flexibility for handling challenging

areas of the ship hull geometry, such as the bow, stern, and transition areas from510

mid-ship towards forwards and afterward perpendiculars.

TshipPM uses 27 parameters accessible to the user. Besides the basic dimen-

sions, Lwl, B, and T, the remaining parameters are non-dimensional, valued in

(0,1). All parameters are appropriately interrelated so that a consistent control

cage is delivered to Rhino5 3D and T-splines plug-in, which produce surfaces515

consisting of only 196 control points. As a result, TshipPM is able to navigate
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in a rich design space at a low computational cost. Extensive experimentation

also indicates that TshipPM is stable for it provides valid outcomes (non-self-

intersecting geometries) against strong parameter variations.

TshipPM is compared against CAESES which uses 31 parameters for the repre-520

sentation of the container-ship hull KCS [27], already employed in the pertinent

literature for CAD and CFD benchmarking purposes. Comparison criteria in-

clude: a) common parameters, b) moments (up to 2nd order), c) sectional area

curve (SAC), d) Gaussian and e) sectional curvatures, and f) Hausdorff dis-

tance. Both PMs behave satisfactory, with TshipPM doing better with respect525

to moments, producing G1-continuous surfaces, which exhibit less undesired sign

variations of the Gaussian and sectional curvatures. Furthermore, TshipPM

produces instances with considerably fewer control points in comparison with

CAESES, as it takes advantage of the T-splines representation. CAESES, on

the other hand, performs better with respect to the deviation from the KCS530

SAC, as well as the fairness of sections, except from some extraneous inflection

points. Finally, CAESES produces accurate planar areas for flat of side/bottom,

though at the expense of smoothness, and its geometric deviation from KCS,

measured in terms of Hausdorff distance, is considerably smaller.

Next steps for the further development of the TshipPM include:535

(a) Automatic determination of parameter values so that a given parent hull

can be re-constructed via minimising the deviation from moments, SAC,

and appropriate geometric distance;

(b) Derivation of sufficient conditions of the control cage which secure that the

corresponding T-splines surface does not suffer form self-intersections;540

(c) Decrease of extra-ordinary vertices under complexity constraints;

(d) Accurate incorporation of planar areas.
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