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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here is
conducted under the supervision of Professor Arne B. Sletsjøe and Doctors Tor
Dokken, Georg Muntingh, Oliver Barrowclough and Heidi E.I. Dahl.

The work presented is connected to the Innovative Training Network
ARCADES (Algebraic Representations in Computer-Aided Design for complEx
Shapes), which is part of the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No.
675789. The ARCADES project aims to disrupt the traditional paradigm in
Computer-Aided Design (CAD) to build the next generation of CAD software
relying on strong foundations from algebraic geometry, differential geometry,
scientific computing, and algorithm design.

The thesis is a collection of three papers. The common theme to them is
the investigation and deepening of all the aspects needed to efficiently employ
the Locally Refined (LR) B-splines in simulations and approximations: from the
study of linear independence to the construction of local and adaptive refinement
strategies and the analysis of the mesh parametrization problem. The papers
are preceded by an introductory chapter that relates them together and provides
background information and motivation for the work. The first paper is a joint
work with Doctor Tor Dokken. The second paper is a joint work with Professors
Carla Manni, Francesca Pelosi and Hendrik Speleers. The last paper is a joint
work with Professor Michael S. Floater.

iii





Acknowledgements
First and foremost, I wish to thank Tor Dokken for his precious guidance, his
enthusiasm and his help throughout my PhD studies. Despite his numerous
commitments, he was never too busy for talking with me.

A special thanks goes to Georg Muntingh, for his advice and his support during
the most difficult times of these three years.

I wish to thank also Oliver Barrowclough and Heidi E.I. Dahl, your doors were
always open for discussion.

I am also grateful to Johan S. Seland, Morten Ofstad and Stein Pedersen, for
your kindness and patience. You made me feel immediately part of your fantastic
team at Bluware inc.

I gratefully acknowledge Michael S. Floater. It has been a pleasure to work
together and I hope there will be other occasions to do it again.

I would also like to express my deep gratitude to Carla Manni, Francesca Pelosi
and Hendrik Speleers, as you have encouraged and supported me to apply for
this PhD position. I have been so lucky in finding kind people like you in my
Master’s to guide me during my first steps in the academic world. I would not
be here if it was not for you.

Last, but absolutely not least, I want to thank my parents and my girlfriend
Cristina. You have always believed in me.

Francesco Patrizi
Oslo, September 2020

Marie Skłodowska-Curie
Actions

This thesis was funded by the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 675789.

v





List of Papers

Paper I

F. Patrizi, and T. Dokken ‘Linear dependence of bivariate Minimal Support
and Locally Refined B-splines over LR-meshes’. Accepted for publication on
Computer Aided Geometric Design.

Paper II

F. Patrizi, C. Manni, F. Pelosi, and H. Speleers ‘Adaptive refinement with locally
linearly independent LR B-splines: Theory and applications’. Submitted for
publication.

Paper III

M. S. Floater, and F. Patrizi ‘Transfinite mean value interpolation over polygons’.
In press on Numerical Algorithms, DOI: 10.1007/s11075-019-00849-w.

vii





Contents

Preface iii

Acknowledgements v

List of Papers vii

Contents ix

1 Introduction 1
1.1 Spline spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Minimal Support and Locally Refined B-splines . . . . . . 10
1.3 Generalized barycentric coordinates and mesh parametrization 22
1.4 Summary of Papers . . . . . . . . . . . . . . . . . . . . . . 27
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Papers 32

I Linear dependence of bivariate Minimal Support and
Locally Refined B-splines over LR-meshes 33
I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 33
I.2 Box-partitions and LR-meshes . . . . . . . . . . . . . . . . 36
I.3 Spline spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 39
I.4 Univariate B-splines and bivariate B-splines . . . . . . . . 42
I.5 Minimal Support B-splines and Locally Refined B-splines . 44
I.6 Hand-in-hand principle . . . . . . . . . . . . . . . . . . . . 46
I.7 Characterization of linear dependence in BMS(N ) . . . . . 48
I.8 Minimal number of LR B-splines for a linear dependence

relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
I.9 Improvement of the Peeling Algorithm . . . . . . . . . . . 65
I.10 Conclusions, conjectures and future work . . . . . . . . . . 66
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

II Adaptive refinement with locally linearly independent LR
B-splines: Theory and applications 69
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 69
II.2 Locally refined B-splines . . . . . . . . . . . . . . . . . . . 71
II.3 N2S structured mesh refinement strategy . . . . . . . . . . 78
II.4 Application I: Quasi-interpolation . . . . . . . . . . . . . . 85
II.5 Application II: Isogeometric analysis . . . . . . . . . . . . 89
II.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ix



Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

III Transfinite mean value interpolation over polygons 95
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 95
III.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
III.3 Interpolation on an edge . . . . . . . . . . . . . . . . . . . 97
III.4 Interpolation at a vertex . . . . . . . . . . . . . . . . . . . 99
III.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . 101
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendices 105

A Dimension of the spline spaces 107
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B B-splines 113
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

x



Chapter 1

Introduction
Since the ’70s, curves and surfaces in engineering have been usually expressed
by means of Computer Aided Design (CAD) technologies, such as B-splines and
Non-Uniform Rational B-splines (NURBS). These have numerous properties
that allow to easily control and modify the geometries they describe:

• positivity,

• local supports,

• piecewise (rational) polynomials,

• partition of unity and convex hull property.

These properties make B-splines and NURBS useful tools to engineer objects with
complex shapes. Furthermore, the introduction of Isogeometric Analysis (IgA)
[19] has integrated such technologies into the Finite Element Analysis (FEA)
as well, unifying the geometric description of the problem with its numerical
resolution, in order to expedite the simulation process and gaining in accuracy.
In addition to the properties listed above, B-splines and NURBS feature other
qualities appreciated in this context, such as (local) linear independence and
high global smoothness.

Nevertheless, the constantly increasing demand for higher precision in
simulations and reverse engineering processes requires the possibility to refine
only where large variations occur, in order to reduce the approximation error
while retaining feasible computational costs. In order to achieve this adaptivity,
new formulations of B-splines and NURBS have been established [3, 6, 7, 9, 15,
16, 31]. These new classes of functions are defined on locally refined meshes, in
which T-vertices in the interior of the domain are allowed, as opposed to classical
B-splines and NURBS for which tensor meshes, with no internal T-vertices, are
required.

Locally Refined B-splines, or in short LR B-splines [7], are one of these new
formulations, and their definition is inspired by the knot insertion refinement
process of B-splines. These latter are defined on global knot sequences, one per
direction. In 2D, the insertion of a new knot in a knot sequence corresponds to a
line segment in the mesh crossing the entire domain. This refines all the B-splines
whose supports are crossed by the inserted segment. Instead, LR B-splines are
defined on local knot vectors and the insertion of a new knot is always performed
with respect to a particular LR B-spline. This means that in addition to the knot,
one also decides which LR B-spline supports the corresponding line segment
in the mesh is traversing, i.e., which LR B-splines have to be refined by the
knot insertion. As a consequence, the LR B-spline definition is consistent with
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1. Introduction

the B-spline definition when the underlying mesh at the end of the process is
a tensor mesh, and the formulation of LR B-splines remains broadly similar to
the standard B-splines even though they address local refinements. This makes
them one of the most elegant extensions to achieve the adaptivity of the mesh
and worthy of investigation.

LR B-splines satisfy the same properties of classical B-splines except the
local linear independence for which a particular structure of the mesh is required.
Even though such a characterization for the local linear independence of the
LR B-splines in terms of meshing constraints is provided in [2], an adaptive
refinement strategy to produce meshes with this structure was missing in the
literature. To the best of my knowledge, the only mesh construction that leads
to a locally linearly independent collection of LR B-splines is proposed in [2]
as well. However, such a process cannot be recorded as an adaptive refinement
because the regions to be refined and the maximal resolution, i.e., the sizes of
the smallest cells in the domain induced by the mesh, have to be chosen a priori.
The purpose of Paper 2 is to describe the first fully adaptive refinement ensuring
the local linear independence of the LR B-splines. Such a property allows, inter
alia, to design efficient quasi-interpolation schemes and to bound the band-width
in the matrices produced by the numerical discretization of PDEs.

More generally, the set of LR B-splines can even be linearly dependent if
no assumptions on the locally refined mesh are established. Although linear
dependence is not a major issue for geometric design, it constitutes a difficulty
when performing simulations in the IgA context, as it requires the resolution of
singular linear systems to assemble the numerical approximation. As of today,
there is no known characterization of the linear independence for LR B-splines.
Paper 1 starts this analysis by looking at geometric necessary conditions for
the mesh to have a linear dependence relation among the LR B-splines. In
particular, it relates the linear dependence to the position of the T-vertices in
the mesh and to the LR B-spline support inclusions. These observations allow
also the computation of the minimal number of LR B-splines that can form a
linear dependence relation. Such a lower bound (8 functions) turns out to be
independent of the polynomial bidegree used to define the LR B-splines and
it is sharp, as shown by the examples contained in the paper where a linear
dependence relation with exactly 8 LR B-splines is provided for any bidegree
(p1, p2) 6= (0, 0), (1, 0), (0, 1), (1, 1).

For some applications, e.g., reservoir modeling and biomedical engineering,
the geometry of the problem is not directly established within the CAD system
but it has to be modeled from the scanning of a physical object. A fundamental
step to generate a spline surface approximation of the acquired data is what
is called mesh parametrization. This establishes a bijective map between a
triangular surface, which represents a first approximation of the data, and a
parameter domain. Mesh parametrizations almost always introduce distortions
in either the angles or the areas, which affect the quality of the final spline
surface approximation. Therefore, it is crucial to define mesh parametrizations as
similar as possible to isometries in order to reduce such distortions. For piecewise
linear surfaces, such as the triangular surfaces, a strategy that has proved to be
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Spline spaces

efficient for this purpose consists of expressing the image of the interior vertices
of the triangulation in terms of the images of the surrounding vertices using
generalized barycentric coordinates. In particular, the mean value coordinates
turned out to be a successful and popular choice thanks to their simple and
closed formula and the smoothness of the resulting mesh parametrization.

Generalized barycentric coordinates allow the construction of smooth
functions that interpolate piecewise linear continuous data prescribed at the
boundary of a polygon. One can then consider the more general problem of
finding a smooth function that interpolates the value of any given continuous
function at the boundary of a closed domain. The mean value coordinates have
been extended to a transfinte mean value interpolant to address this problem
in [8]. However, a proof of interpolation is provided in [8] only under strong
conditions on the shape of the boundary, which exclude polygonal domains.
Paper 3 provides an alternative proof for these cases that relies on the continuity
of the given data.

The remainder of this Chapter yields the background knowledge to understand
the content of the papers. The LR B-splines are elements of spline spaces, that
is, spaces of piecewise polynomials of some bidegree defined on a partition in
boxes of a rectangular domain with prescribed continuity constraints on the
line segments forming the mesh. Section 1.1 defines these spaces and studies
the stability of their dimension formula. Section 1.2 introduces the notion of
Minimal Support B-splines, or in short MS B-splines, and LR B-splines. As one
can guess from their name, MS B-splines are the B-splines with minimal support,
i.e., without superfluous line segments crossing their support, identifiable on the
locally refined mesh. The LR B-splines are a subset of the MS B-splines. The
difference between the two is that the latter are not always the result of a knot
insertion. For a given bidegree, they depend only on the mutual position of the
line segments in the mesh. We then explain under which conditions the MS and
LR B-spline sets form a basis of the spline space. Moreover, Section 1.2 introduces
the linear dependence problem for the LR B-splines, illustrates the current tools
used to detect and solve it in most configurations and explains the motivation
for Paper 1. Furthermore, the local linear independence is characterized at the
end of the section and the motivation for Paper 2 is provided. Finally, Section
1.3 briefly describes a procedure to define mesh parametrizations by using
generalized barycentric coordinates. Then it recalls the mean value coordinates,
their numerous properties, shows their extension to transfinite interpolation and
the motivation for Paper 3.

The Chapter terminates with a Summary of Papers, which constitutes a
more technical description of the results achieved in each of the papers.

1.1 Spline spaces

In this section we define the univariate spline space over a knot sequence and the
bivariate spline space over an arbitrary axis-aligned partition of a rectangular
domain in R2, with given polynomial degrees and continuity constraints. In
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1. Introduction

particular we provide the dimension formula for such spaces. The formula for
the bivariate space can be divided into two parts. One part is a combinatorial
term that only depends on the topological structure of the partition, polynomial
bidegree and continuity constraints. The second part is an alternating sum of
dimensions of homological terms. Such terms make the dimension of the spline
space unstable, that is, dependent also on the size of the partition elements [22].
Therefore, we present sufficient conditions to nullify such homological terms in
order to reduce the computation of the dimension to a combinatorial counting.

1.1.1 Univariate spline space

Definition 1.1.1. Given an increasing sequence τττ = (τ1, . . . , τn) of real numbers,
a positive integer p and a function µ : τττ → N such that 1 ≤ µ(τi) ≤ p+ 1 for all
i, we define the corresponding spline sequence as the triple τττµp = (τττ , µ, p).

Given a spline sequence τττµp , we say that τi ∈ τττ has full multiplicity if
µ(τi) = p+ 1 and we say that τττµp is open if τ1 and τn have full multiplicity.

Sometimes it is more convenient to write a spline sequence, in the equivalent
way, as the pair tttp = (ttt, p) where ttt is a non-decreasing sequence ttt = (t1, . . . , t`)
with ` =

∑n
i=1 µ(τi) and

t1 = · · · = tµ(τ1)︸ ︷︷ ︸
= τ1

< tµ(τ1)+1 = · · · = tµ(τ1)+µ(τ2)︸ ︷︷ ︸
= τ2

< · · ·

We use bold Greek letters with the multiplicity function in superscript in the
first way of expression and bold Latin letters for the second way.

Given a degree p, we denote as Πp ⊂ R[t] the vector space spanned by the
monomials tj such that 0 ≤ j ≤ p.

Definition 1.1.2. Given a spline sequence τττµp = (τττ , µ, p) with τττ = (τ1, . . . , τn),
we define the univariate spline space on τττµp , denoted S(τττµp ) or equivalently
S(tttp), as the set of all functions f : R→ R such that

1. f is zero outside [τ1, τn],

2. the restrictions of f to the intervals [τi, τi+1) for 1 ≤ i < n−1 and [τn−1, τn]
are polynomials in Πp,

3. f is Cp−µ(τi)-continuous at τi.

Theorem 1.1.3 ([30, Theorem 4.4]). Given a spline sequence τττµp , the correspond-
ing spline space S(τττµp ) has dimension

dim S(τττµp ) = max
{(

n∑
i=1

µ(τi)
)
− (p+ 1), 0

}
. (1.1)
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Figure 1.1: Example of box-partition and corresponding mesh.

1.1.2 Spline space over a box-partition

Definition 1.1.4. Given an axis-aligned rectangle Ω ⊆ R2, a box-partition of
Ω is a finite collection E of axis-aligned rectangles in Ω such that:

1. β̊1 ∩ β̊2 = ∅ for any β1, β2 ∈ E , with β1 6= β2.

2.
⋃
β∈E β = Ω.

Definition 1.1.5. Given a box partition E , we define the vertices of E as the
vertices of its elements. In particular, a vertex of E is called a T-vertex if it is
the intersection of edges of three elements. We call V the set of vertices of E .

Definition 1.1.6. Given a box-partition E of a rectangle Ω ∈ R2, a meshline of
E is a segment contained in an edge of an element E , connecting two, and only
two, vertices of V at its end-points. The collection of all the meshlines of the
box-partition is called the mesh,M.

We further define a multiplicity function µ : M → N∗ that associates a
positive integer to every meshline, called the multiplicity of the meshline.

When the T-vertices of E occur only on ∂Ω and all collinear meshlines have
the same multiplicity, the corresponding mesh is called a tensor mesh.

Finally, if all the meshlines of a box-partition E have the same multiplicity
m we say that the corresponding meshM has multiplicity m.

Figure 1.1 shows an example of (a) a box-partition E and (b) a corresponding
mesh M. The meshlines are identified by squares reporting the associated
multiplicities.

A meshline can be expressed as the Cartesian product of a point in R and
a finite interval. Let a ∈ R be the value of such a point and let k ∈ {1, 2} be
its position in the Cartesian product. If k = 1 the meshline is vertical and if
k = 2 the meshline is horizontal. We sometimes write k-meshline to specify
the direction of the meshline and (k, a)-meshline to specify on exactly what
axis-parallel line in R2 the meshline lies.

5



1. Introduction

Definition 1.1.7. A spline mesh in R2 is a triple N = (M, µ,ppp) whereM is
a mesh from a box-partition E , ppp = (p1, p2) is a pair of positive integers and
µ : M → N is a multiplicity function such that 1 ≤ µ(γ) ≤ pk + 1 for every
k-meshline γ ∈ M. In particular, if a k-meshline γ has multiplicity pk + 1 we
say that γ has full multiplicity. A spline mesh N is open if every boundary
meshline has full multiplicity. A spline mesh N = (M, µ,ppp) is called a tensor
spline mesh ifM is a tensor mesh.

Remark 1.1.8. N = (M, µ,ppp) is a tensor spline mesh if and only if there exist
two spline sequences τττµ1

1,p1
, τττµ2

2,p2
such that every k-meshline γ inM is a (k, τi)-

meshline for some τi ∈ τττk and µ(γ) = µk(τi). Therefore, we sometimes write
N [τττµ1

1,p1
, τττµ2

2,p2
] = (M[τττµ1

1,p1
, τττµ2

2,p2
], µ[τττµ1

1,p1
, τττµ2

2,p2
], ppp) to specify from what spline

sequences the tensor spline mesh N can be generated from.
Given a bidegree ppp = (p1, p2), we denote as Πppp ⊂ R[x, y] the vector space

spanned by the monomials xi1yi2 such that 0 ≤ ik ≤ pk for k = 1, 2.

Definition 1.1.9. Given a spline mesh N = (M, µ,ppp) corresponding to a box-
partition E of a rectangle Ω = [a1, b1]×[a2, b2], for any element β ∈ E , β = J1×J2
with Jk = [aβ,k, bβ,k], we set

β̃ = J̃1 × J̃2 with J̃k =

 [aβ,k, bβ,k) if bβ,k < bk

[aβ,k, bβ,k] if bβ,k = bk.
(1.2)

The spline space on N , denoted by S(N ), is the set of all functions f : R2 → R
such that

1. f is zero outside Ω,

2. for each element β ∈ E , the restriction of f to β̃ is a bivariate polynomial
function in Πppp,

3. for each k-meshline γ ∈M, f ∈ Cpk−µ(γ)-continuous across γ.

Before stating the dimension formula of the spline space, we formalize the
mesh refinement, that is, we describe how a mesh changes when new segments
are inserted.

Definition 1.1.10. Given a box-partition E and an axis-aligned segment γ, we
say that γ traverses β ∈ E if γ ⊆ β and the interior of β is divided into two
parts by γ, i.e., β\γ is not connected.

A split is a finite union of contiguous and collinear axis-aligned segments
γ = ∪iγi such that every γi either is a meshline of the box-partition or γi
traverses some β ∈ E .

We say that a spline mesh N = (M, µ,ppp) has constant splits if any split γ
inM is made of meshlines of the same multiplicity.

In this work we consider only spline meshes with constant splits.

6
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As for meshlines, we sometimes write k-split with k ∈ {1, 2} to specify the
direction of the split or (k, a)-split to specify on what axis-parallel line the split
lies.

When a split γ is inserted in a box-partition E , any traversed β ∈ E is
replaced by the two subrectangles β1, β2 given by the closures of the connected
components of β\γ. The resulting new box-partition is indicated as E + γ and
its corresponding mesh as M + γ. Assigning a positive integer µγ to γ, the
multiplicities of the meshlines inM∩ (M+γ) not contained in γ are unchanged,
while the multiplicities of those that are in γ are increased by µγ . The new
meshlines contained in (M+ γ)\M have multiplicity equal to µγ . If µ was the
multiplicity function associated toM, the multiplicity function on the refined
meshM+ γ is denoted as µ+ µγ .

The spline meshes used in applications are often the result of a mesh
refinement process. That is, given an initial coarse tensor spline mesh N0
and a sequence of splits γi with associated integers µγi for i = 1, . . . , N − 1, the
spline mesh considered is the final entry of a sequence of spline meshes of the
form Ni = Ni−1 + γi where Ni−1 + γi = (Mi + γi, µi−1 + µγi , ppp). However, not
every mesh is obtained in this way. For example, there is no sequence of splits
that can generate the mesh depicted in Figure 1.2 from the tensor mesh equal
to the domain boundary.

Figure 1.2: A mesh that cannot be obtained by a mesh refinement process.

In this introduction we will provide the dimension formula only for those
spline space that can be built through a mesh refinement process. In Appendix
A we treat the more general case. We also assume some conditions on the splits
inserted during the process. The next definitions introduce the notations needed
for these conditions.

Definition 1.1.11. Given a meshM corresponding to a box-partition E , for any
vertex vvv of E we define

µ1(vvv) = max{µ(γ) : vvv ∈ γ and γ 1-meshline ofM}
µ2(vvv) = max{µ(γ) : vvv ∈ γ and γ 2-meshline ofM}

µ1(vvv) is called vertical multiplicity and µ2(vvv) horizontal multiplicity of
vertex vvv.

Note that for meshes with constant splits, each maximum in Definition 1.1.11 is
taken over identical multiplicities.

Example 1.1.12. Figure 1.3 shows an example of the computation of horizontal
and vertical multiplicities for two vertices of a box-partition. The meshlines
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Figure 1.3: Example of the computation of vertical and horizontal multiplicities.

on the left and right hand side of vvv1 have multiplicity 1 and 2 respectively.
So µ2(vvv1) = max{1, 2} = 2. The meshlines above and below vvv1 have both
multiplicity 1, so that µ1(vvv1) = 1. Concerning vvv2, we have µ2(vvv2) = 2, whereas
µ1(vvv2) = max{1} = 1 since there is no meshline below vvv2.

Definition 1.1.13. Given a (k, a)-split γ in a spline mesh N = (M, µ,ppp), all
the vertices where γ intersects meshlines of M have kth coordinate equal to
a and different (3− k)th coordinate. We define the spline sequence on γ as
τττ
µ3−k
p3−k , where the elements of τττ are given by such (3− k)th coordinates and the

multiplicity function of this spline sequence is the µ3−k multiplicity function of
the corresponding vertices.

Definition 1.1.14. When a spline mesh N = (M, µ,ppp) is refined by inserting a
k-split γ, we define the expanded spline sequence on γ, τττ µ̃3−k

p3−k , as the spline
sequence on γ, τττµ3−k

p3−k , as split of N + γ := (M+ γ, µ+ µγ , ppp), except that, in
case γ is an extension of a split ofM, the point in τττ corresponding to the joint
vertex has full multiplicity.

As an example, when γ is an extension of two splits ofM, i.e., it connects
them, then the expanded spline sequence on γ is open, that is, τ1 and τn have
both full multiplicity.

The dimension formula for the spline space is presented in [28] and consists of
two parts. The first part is a combinatorial counting, easy and direct to compute
by looking at the topology of the mesh, meshline multiplicities and bidegree.
The second part is a sum of homology terms. This is harder to calculate and the
value can depend not only on the topology of the mesh but also on its geometrical
representation [22]. This means that the spline dimension is unstable under slight
changes of the size of the box-partition elements. As a consequence, spline spaces
on meshes with the same topological structure, the same meshline multiplicities
and the same bidegree, might have different dimension. An example is shown in
Figure 1.4. We consider two open spline meshes with ppp = (2, 2), meshes as in
Figure 1.4(a) and Figure 1.4(b) with interior meshlines of multiplicity 1. One
can show that the combinatorial part of the spline dimension formula is equal to
36 in both cases, while the homological part is equal to 1 in (a) and 0 in (b).
Therefore the corresponding spline space has dimension 37 in (a) and 36 in (b).
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Figure 1.4: Two meshes with same topology and different geometry.

However, if we restrict our attention to a spline mesh N resulting from mesh
refinement process, N = NN for some N ∈ N, such that

• LR-rule 1: The spline space S(N0) over the initial tensor spline mesh N0
is nontrivial, i.e., S(N0) 6= {0},

• LR-rule 2: The spline space S(τττ µ̃3−k
p3−k ) over the expanded spline sequence

τττ
µ̃3−k
p3−k on any k-split inserted during the refinement process is nontrivial,

then the spline space S(N ) defined on the spline mesh N = (M, µ,ppp),
corresponding to a box-partition E , has dimension given by the following
combinatoric counting:

dim S(N ) =
∑
qqq∈V

[(p1 − µ1(qqq) + 1)(p2 − µ2(qqq) + 1)]

− (p2 + 1)
∑
γ∈M1

(p1 − µ(γ) + 1)− (p1 + 1)
∑
γ∈M2

(p2 − µ(γ) + 1)

+ |E|(p1 + 1)(p2 + 1),
(1.3)

where |E| is the cardinality of E , µ1, µ2 are respectively the vertical and horizontal
multiplicities of the box-partition vertices andM1,M2 ⊂M are the collections
of 1-meshlines and 2-meshlines inM.

We will always assume the LR-rules when performing a mesh refinement
process. Note that the LR-rule 2 is not verified in the mesh refinement process
that leads to the meshes in Figure 1.4 and, as a consequence, the dimension of
the corresponding spline space is unstable. A more deep analysis of the spline
space dimension can be found in Appendix A.

The next Theorem 1.1.15 is called dimension increasing formula and it
describes the consequential increase in the spline space dimension due to a mesh
refinement. It relates the dimension of the refined spline space to the dimensions

9
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of the old spline space and of the univariate spline space on the expanded spline
sequence on the split inserted. This result can be proved from the dimension
formula (1.3) by looking at the local change in the topology when a split is
inserted in a mesh.

Theorem 1.1.15 ([7, Theorem 5.5]). When a spline mesh N = (M, µ,ppp) is
refined by inserting a k-split γ, the dimension of the spline space on the resulting
new spline mesh N + γ is given by

dim S(N + γ) = dim S(N ) + dim S(τττ µ̃3−k
p3−k

), (1.4)

where τττ µ̃3−k
p3−k is the expanded spline sequence on γ.

We rather use the dimension increasing formula to compute the spline space
dimension when the underlying mesh can be built through a mesh refinement
process from a coarse tensor mesh.

1.2 Minimal Support and Locally Refined B-splines

In this section we define the bivariate Minimal Support B-splines, or in short
MS B-splines, and their subcollection of Locally Refined B-splines, or in short
LR B-splines. The former can be defined on any spline mesh, as their definition
depends on the topological structure of the box-partition, bidegree and meshline
multiplicities. The latter can be defined only on spline meshes that are the result
of a mesh refinement process, as they are generated while performing such a
mesh refinement process, by means of the so-called knot insertion procedure.

Both the definitions are generalizations of the concept of bivariate B-splines.
Univariate and bivariate B-splines, their basic properties and the knot insertion
procedure are briefly recalled in Appendix B. We denote the bivariate B-spline
defined on the knot vectors xxx = (x1, . . . , xp1+2) and yyy = (y1, . . . , yp2+2) as
B[xxx,yyy]. The bidegree of B[xxx,yyy] is ppp = (p1, p2) and it is implicitly expressed by
the number of entries in xxx and yyy. Given a bivariate B-spline B[xxx,yyy], its knot
vectors xxx and yyy identify a tensor spline mesh N [xxx,yyy] = (M[xxx,yyy], µ[xxx,yyy], ppp) in
suppB[xxx,yyy]. In fact, let xi1 , . . . , xir and yj1 , . . . , yjs be the distinct knots in xxx
and yyy, respectively. Any knot xi` defines a 1-split ofM[xxx,yyy] as

γ =
s⋃

n=1
γn with γn = {xi`} × [yjn , yjn+1 ] (1.5)

where the multiplicities µ[xxx,yyy](γn) are equal to the multiplicity of xi` in xxx, for
all n = 1, . . . , s. In the same way, the knots yj` , for ` = 1, . . . , s, define the
2-splits inM[xxx,yyy] and the multiplicities assigned to the 2-meshlines.

Definition 1.2.1. Given a spline mesh N = (M, µ,ppp) and a B-spline B[xxx,yyy] of
bidegree ppp, we say that B[xxx,yyy] has support on N if the meshlines inM[xxx,yyy]
can be obtained as unions of meshlines inM, and their multiplicities are less
than or equal to the multiplicities of the corresponding meshlines inM.
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(a) (b) (c) (d)

Figure 1.5: Support of B-splines of bidegree (2, 2) on a spline mesh N =
(M, 1, (2, 2)). The mesh M is shown in (a). The B-splines whose supports
are depicted in (b) and (c) have minimal support on M. The tensor meshes
defined by their knots in their supports are highlighted with thicker lines. On
the other hand, the B-spline in (d) does not have minimal support on N : the
split highlighted by the dashed line disconnects the support.

Definition 1.2.2. Given a spline mesh N = (M, µ,ppp), a B-spline B[xxx,yyy] of
bidegree ppp with support on N and a split γ ⊆M, we say that γ traverses B[xxx,yyy]
if the interior of suppB[xxx,yyy] is divided into two parts by γ, i.e., suppB[xxx,yyy]\γ is
not connected and either γ is inM\M[xxx,yyy] or γ ⊆M[xxx,yyy] but the multiplicities
of its meshlines are higher in N than in N [xxx,yyy]. Then a B-spline B[xxx,yyy] is said
to have minimal support on N if it has support on N and there is no split γ
inM traversing B[xxx,yyy]. The collection of all the minimal support B-splines, or
MS B-splines, on N is denoted by BMS(N ).

Figure 1.5 shows examples of B-splines of bidegree (2, 2) with support on a
spline mesh N = (M, 1, (2, 2)). In particular, in (a) is reported the meshM,
the B-splines considered in (b)–(c) have minimal support, while the support of
the B-spline in (d) can be disconnected by the split γ, visualized by the dashed
line in the figure.

Given a spline mesh N and a B-spline B[xxx,yyy] with support on N , assume
that it has not minimal support on N . Then, there exists a (k, a)-split γ, for
some k ∈ {1, 2} and a ∈ R, traversing B[xxx,yyy]. Either γ is in M\M[xxx,yyy] or
γ ⊆ M[xxx,yyy], i.e., a is an internal knot of xxx for k = 1 or yyy for k = 2, but the
multiplicities of its meshlines are higher in N than in N [xxx,yyy]. Assume that
the meshlines in γ have multiplicity m in N . One could consider such a as an
extra knot, of multiplicity m if γ ⊆ M\M[xxx,yyy] and of multiplicity m − µ(a)
if γ ⊆ M[xxx,yyy], with respect to the knot vector of B[xxx,yyy] on the kth direction
(in xxx if the k = 1 and in yyy if k = 2) and perform the knot insertion on B[xxx,yyy].
In the second case, since a was already a knot in the knot vector, this means
raising its multiplicity by m − µ(a). The resulting generated B-splines would
still have support on N and eventually they would also have minimal support
on N . As an example, the split γ highlighted with dashed lines in Figure 1.5(d)
is made of (2, a)-meshlines, for some a ∈ R, of multiplicity 1. Such a a can be
inserted as a new knot of multiplicity 1 in the knot vector on the y-direction of
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1. Introduction

the considered B-spline to refine it in two B-splines via knot insertion.
The LR B-splines are generated by means of the above procedure. We start

by considering a coarse tensor spline mesh, defining at least one B-spline, and
we refine it by inserting splits, one at a time. On the initial mesh we consider
the collection of bivariate B-splines and whenever a B-spline in our collection
has no longer minimal support during the mesh refinement process, we refine it
by using the knot insertion procedure. The LR B-splines will be the final set of
B-splines produced by this algorithm.

Definition 1.2.3. Given a bidegree ppp, let N0 = (M0, µ0, ppp) be a tensor spline
mesh and let B0 be the set of bivariate B-splines of bidegree ppp on N0. We then
define a sequence of spline meshes N1,N2, . . . and corresponding function sets
B1,B2, . . . as follows. For i = 0, 1, . . ., let γi be a split such that the support of
at least one B-spline in Bi is traversed by a split of Ni+1 := Ni + γi. On this
refined spline mesh Ni+1, the new set of B-splines Bi+1 is constructed by the
following algorithm:

1. Initialize the set by Bi+1 ← Bi.

2. As long as there exists B[xxxj , yyyj ] ∈ Bi+1 with no minimal support on Ni+1:

a) apply knot insertion:

∃B[xxxj1, yyy
j
1], B[xxxj2, yyy

j
2] : B[xxxj , yyyj ] = α1B[xxxj1, yyy

j
1] + α2B[xxxj2, yyy

j
2]

for α1, α2 ∈ (0, 1],
b) update the set: Bi+1 ← (Bi+1\{B[xxxj , yyyj ]}) ∪ {B[xxxj1, yyy

j
1], B[xxxj2, yyy

j
2]}.

The spline mesh produced at each step is called an LR-mesh and the
corresponding function set is called an LR B-spline set and it is denoted
by BLR(Ni+1).

In general, the mesh refinement process producing a given LR-mesh N = NN
is not unique. Indeed, the split insertion ordering can often be changed. However,
the collection of LR B-splines on N is well defined because it is independent of
such insertion order, as proved in [7, Theorem 3.4].

Given an LR-mesh N , since an LR B-spline is also a MS B-spline, we have
BLR(N ) ⊆ BMS(N ). However, the two sets can be different. An example is
reported in Figure 1.6. In Figure 1.6(a) we have an LR-mesh N = (M, 1, (2, 2)).
This is obtained by inserting two 2-splits and two 1-splits in a tensor mesh N0.
In Figure 1.6(b) we see the supports of the LR B-splines on N , i.e., the elements
of BLR(N ), obtained by refining the B-splines with no minimal support during
the insertion of the splits. However if we look at the final meshM in Figure
1.6(a), we see that there is one MS B-spline, whose support is depicted in Figure
1.6(c), not in BLR(N ), defined on N .

Both the MS B-splines and the LR B-splines have desirable properties for
applications, inherited by the standard bivariate B-splines, as positivity and
compact support. However, in general both the collections do not sum to one.
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(a)

(c)

, , ,

, , ,

, ,
(b)

Figure 1.6: (a) an LR-mesh N = (M, 1, (2, 2)). (b) Supports of the LR B-splines
defined on N . (c) Support of a MS B-spline on the LR-mesh not in BLR(N ).

Indeed, this happens only when the collections are locally linearly independent
as we will see later. Nevertheless, the following Proposition 1.2.4 provides
positive scaling weights to make the LR B-spline set form a partition of unity
over any open LR-mesh. Given an LR-mesh N , the corresponding LR B-spline
set BLR(N ) = BN is the final element of a sequence of B-spline sets {Bi}Ni=1
described in Definition 1.2.3. However, {Bi}Ni=1 is a subsequence of {B̃i}i, whose
final element is still BLR(N ), given by

B̃i+1 = (B̃i\{B0}) ∪ {B1, B2}

where B0 ∈ B̃i is an LR B-spline that has no longer minimal support on the
LR-mesh and that therefore can be refined via knot insertion in B1 and B2:

B0 = α1B1 + α2B2 for α1, α2 ∈ (0, 1]. (1.6)

Note that B1 and/or B2 could already belong to B̃i.

Proposition 1.2.4 (Partition of unity, [7, Lemma 7.1]). Suppose
∑
B∈B̃i γi,BB =

1 for some strictly positive numbers γi,B. Then
∑
B∈B̃i+1

γi+1,BB = 1 where
γi+1,B are all strictly positive, and more precisely γi+1,B = γi,B if B ∈
B̃i\{B0, B1, B2} and

γi+1,B` =
{
γi,B0α` if B` /∈ B̃i
γi,B` + γi,B0α` if B` ∈ B̃i

for ` = 1, 2 (1.7)

where B0, B1, B2, α1, α2 are given by (1.6).

Since on the initial open tensor spline mesh N0 the standard bivariate B-
splines sum to one, Proposition 1.2.4 provides a constructive procedure to define
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the weights to make the LR B-splines defined on the final LR-mesh N = NN a
partition on unity.

1.2.1 Spanning properties: the hand-in-hand principle

Given an LR-mesh N , we have spanBLR(N ) ⊆ spanBMS(N ) ⊆ S(N ).
N = NN is the final element of an LR-mesh sequence defined from an initial
tensor spline mesh N0. On N0, BLR(N0) = BMS(N0) and they are nothing more
than the standard bivariate B-splines defined on N0. By the Curry-Schoenberg
Theorem [5, page 97], spanBLR(N0) = spanBMS(N0) = S(N0). The purpose of
this section is to investigate what are the conditions to satisfy during the mesh
refinement process that produces N to preserve these equalities. In this way,
we maximize the approximation power of the MS and LR B-splines as the full
spline space is spanned on the final LR-mesh N .

Therefore, assume that on a given LR-mesh N = (M, µ,ppp) we have
spanBMS(N ) = S(N ), or spanBLR(N ) = S(N ) respectively. Suppose we refine
N with the insertion of a split γ. We look for the conditions on γ in order to have
spanBMS(N + γ) = S(N + γ), or spanBLR(N + γ) = S(N + γ) respectively. If
this happens, we say that N + γ goes MS-wise, or LR-wise respectively,
hand-in-hand with N . Note that if N +γ goes LR-wise hand-in-hand with N ,
then it also goes MS-wise hand-in-hand with N , as BLR(N + γ) ⊆ BMS(N + γ).

Therefore, in order for the MS, or the LR, B-splines to span the full spline
space on the final LR-mesh provided by a mesh refinement process, we have to
ensure that all the intermediate LR-meshes go MS-wise, or LR-wise, hand-in-
hand.

Theorem 1.2.5 ([7, Theorem 5.10]). Let N = (M, µ,ppp) be an LR-mesh. Assume
that spanBMS(N ) = S(N ), or spanBLR(N ) = S(N ) respectively. Let γ be
a new k-split to insert and τττ µ̃3−k

p3−k be the expanded spline sequence on it. Let
BMS(γ), or BLR(γ) respectively, be the collections of the new B-splines created
in the MS, or LR, B-spline set after the insertion of γ. For any B ∈ BMS(γ),
or B ∈ BLR(γ) respectively, B = B[xxx,yyy] = B[xxx]B[yyy] where B[xxx] and B[yyy] are
the univariate B-splines in the x and y variable respectively, defined on the knot
vectors xxx and yyy. Let Bγ be the univariate B-spline in the y variable if k = 1 or
in the x variable if k = 2, in the expression of B. Then N + γ goes MS-wise, or
LR-wise respectively, hand-in-hand with N if and only if

span {Bγ}B∈BMS(γ)(or BLR(γ) resp.) = S(τττ µ̃3−k
p3−k

).

Theorem 1.2.5 allows to verify the hand-in-hand of the LR-meshes by looking
at the span of univariate B-splines. Note that, since all the Bγ are contained in
S(τττ µ̃3−k

p3−k ), we always have

dim span {Bγ}B∈BMS(γ)(or BLR(γ) resp.) ≤ dim S(τττ µ̃3−k
p3−k

).

We distinguish two cases when this is a strict inequality:
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(a) (b) (c)

Figure 1.7: 3 different LR-meshes and a new split (dashed) to insert. In (a),
after the insertion, the new LR-mesh does not go MS-wise (and so LR-wise)
hand-in-hand, in (b) it goes MS-wise, but not LR-wise, hand-in-hand and in (c)
it goes LR-wise (and so MS-wise) hand-in-hand.

1. The cardinality of BMS(γ), or BLR(γ) respectively, is less than
dim S(τττ µ̃3−k

p3−k ),

2. the cardinality of BMS(γ), or BLR(γ) respectively, is at least equal to
dim S(τττ µ̃3−k

p3−k ) but the linearly independent univariate B-splines Bγ are less
than such dimension.

The cardinality of BMS(γ), or BLR(γ), depends on the mutual position of the
splits in M. This is explained in Figure 1.7. There we insert a new split γ
(dashed line) in three different LR-meshes, N i = (Mi, 1, (2, 2)) for i = 1, 2, 3.
Since the spline space on the expanded spline sequence on γ has dimension
1, dim S(N i + γ) = dim S(N i) + 1 by Theorem 1.1.15. Therefore, a new MS,
or LR, B-spline must be generated to have N i + γ going MS-wise or LR-wise
hand-in-hand with N i.

Unfortunately, in the refined LR-mesh N 1 + γ of Figure 1.7(a) no MS, or LR,
B-splines are created after the insertion due to the splits mutual position. Thus
BMS(N 1 + γ) = BMS(N 1), BLR(N 1 + γ) = BLR(N 1) and N 1 + γ cannot go
neither LR-wise nor MS-wise hand-in-hand with N 1.

In Figure 1.7(b) a new MS B-spline is created when inserting γ, and its
support is highlighted. This MS B-spline is not a result of a knot insertion
procedure, it just appears on the new LR-mesh when γ is inserted. In this case,
N 2 +γ goes MS-wise hand-in-hand (but not LR-wise) with N 2. In Figure 1.7(c),
there is an LR B-spline on N 3 to refine via knot insertion after the insertion
of γ and N 3 + γ goes LR-wise (and so MS-wise) hand-in-hand with N 3. The
supports of the two generated LR B-splines are represented in the figure.

However, although the cardinality of such sets is sufficiently large, the linearly
independent univariate B-splines Bγ can be insufficient for spanning the whole
spline space S(τττ µ̃3−k

p3−k ) on the expanded spline sequence τττ µ̃3−k
p3−k on γ. An example

is reported in Figure 1.8. We consider an LR-mesh N = (M, 1, (2, 2)) and a
new 2-split γ as shown in Figure 1.8(a). The spline space on the expanded
spline sequence τττµ1

2 on γ has dimension 4 so that dim S(N + γ) = dim S(N ) + 4
by Theorem 1.1.15. Moreover, it is easy to verify that N can be constructed
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(a)

B4
γ = B5

γB2
γB3

γB1
γ

τ3

(c) (b)

Figure 1.8: (a) LR-mesh N = (M, 1, (2, 2)) and a new 2-split γ (dashed) with
their intersections (black dots). In (b) the supports of the LR B-splines B1, B2

(top), B3 (center), B4, B5 (bottom) in BLR(γ). In (c) their corresponding
univariate B-splines.

LR-wise hand-in-hand. Therefore, BLR(N ) = BMS(N ) and they span the spline
space S(N ). When γ is inserted, there are 5 LR B-splines, B1, B2, B3, B4, B5,
in BLR(γ), whose support is depicted in Figure 1.8(b). The cardinalities
|BLR(γ)|, |BMS(γ)| are large enough for N + γ to go hand-in-hand with N .
However, if we look at the univariate B-splines Bγ , depicted in Figure 1.8(c),
we can see that B4

γ = B5
γ and B3

γ can be expressed, via knot insertion of τ3,
as a linear combination of B1

γ , B
2
γ . Thus, there are only 3 linearly independent

B-splines in {Bγ}B∈BLR(γ) and the spline mesh N +γ cannot go neither LR-wise
nor MS-wise hand-in-hand with N .

Nevertheless, this phenomenon cannot happen if the spline space on the
expanded spline sequence of the new k-split γ has dimension 1 or 2. Indeed,
there exists at least one restriction Bγ , so it cannot happen if the univariate
spline space has dimension 1. Similarly, if it has dimension 2, there are at least
two different (and so linearly independent) univariate restrictions Bγ .

1.2.2 Linear dependence

The definition of LR-meshes leaves a lot of freedom in the refinement process.
However, this can result in undesirable collections. Namely, the MS and LR B-
splines obtained at the end of the refinement process may be linearly dependent.
Figure 1.9 shows an example on an LR-mesh N = (M, 1, (2, 2)) where the
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1 2 3 4 5 6 7 8 91
2
3
4
5
6
7

(a)

720 · = 108 · + 135 ·

+ 108 · + 324 ·

+ 360 · + 108 ·

+ 268 ·

(b)

Figure 1.9: Example of linear dependence. The parametrization of an LR-mesh
N = (M, 1, (2, 2)) is considered in (a), and the linear dependence relation among
some of the LR B-splines defined on N is illustrated in (b). The LR B-splines
are represented by means of their supports on the mesh and the tensor meshes
generated by their knots are highlighted with thicker meshlines.

explicit relation is provided for a particular parametrization of the mesh M.
It is not yet known what are the precise conditions on the LR-mesh to ensure
a linearly independent set of LR B-splines. In Paper 1, we start this analysis
by looking at necessary geometrical conditions on the LR-mesh to encounter a
linear dependence relation.

On the other hand, there are several ways to verify a posteriori if the MS
and LR B-spline collections are linearly independent.

• Hand-in-hand principle: If the construction of the LR-mesh N went
MS-wise hand-in-hand then we can verify if the LR and MS B-spline
collections are linearly independent or not by computing the spline space
dimension, by using the dimension increasing formula (1.4) during the
mesh refinement process or by using directly the dimension formula (1.3)
on the final LR-mesh, and then counting the MS or LR B-splines defined on
N . If their number is higher than the dimension of the spline space, then
the collection is linearly dependent. Otherwise, if it is equal to dim S(N ),
then the collection is linearly independent. For example, consider again
the LR-mesh N = (M, 1, (2, 2)) of Figure 1.6(a). Since the dimension of
the spline space on the underlying tensor spline mesh is 3 and, for equation
(1.4), by inserting first the 2-splits and then the 1-splits, it increases by 1
twice and then by 2 twice, we have that

dim S(N ) = 3 + 1 + 1 + 2 + 2 = 9.

One can also easily check that the construction of N went MS-wise hand-
in-hand. Therefore, since the MS B-splines on the mesh are 10 and the
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LR B-splines are 9, we conclude that the former are in linear dependence
while the latter are linearly independent.

• Tensor expansion: This approach was proposed in [23, Theorem 1] for T-
splines and extended to the LR B-spline context in [20]. Given an LR-mesh
N = (M, µ,ppp), we prolong all the splits inM to obtain a corresponding
tensor spline mesh N T = (MT , µT , ppp). The MS and LR B-splines defined
on N can be expressed by the standard bivariate B-splines defined on
N T , that is, there exist two rectangular matrices C1 and C2 that map the
bivariate B-splines in the MS and LR B-splines respectively. We know that
the bivariate B-splines are linearly independent. Therefore, the MS and
LR B-splines are linearly independent if and only if the matrices C1 and
C2 respectively have full rank.

• Peeling algorithm: This approach was proposed in [7, Algorithm 6.3].
An open LR-mesh N = (M, µ,ppp) is defined through a mesh refinement
process from an open tensor mesh N0. The standard bivariate B-spline
defined on N0 span the polynomial space Πppp over every box-partition
element of N0, that is, every box-partition element of N0 is contained
in (p1 + 1)(p2 + 1) bivariate B-spline supports. Consequentially, at each
refinement step to produce N , there will be at least (p1 + 1)(p2 + 1) LR
B-splines with support covering each element, and the full polynomial space
Πppp is spanned on each element. If E is the box-partition associated toM,
we say that an element of E is overloaded if it is in the support of more
LR B-splines than necessary for spanning the polynomial space Πppp, that is,
in more than (p1 + 1)(p2 + 1) supports. We call an LR B-spline overloaded
if all the box-partition elements in its support are overloaded. Only the
overloaded LR B-splines can be removed from the LR B-spline collection
without changing the spanning properties over the box-partition elements
in their supports. This implies that only overloaded LR B-splines occur in
linear dependence relations. Moreover, a linear dependence relation has
to involve at least two overloaded LR B-splines on every box-partition
element. Therefore, if a box-partition element is contained only in one
overloaded LR B-spline, this latter is just overloaded and cannot be in
a linear dependence relation. This is the core of the Peeling algorithm
(Algorithm 1.1).
However, the Peeling algorithm might end without answering whether the
LR B-splines onN are linearly independent or not. That is, it might happen
that all the overloaded elements, collected in EO, are in the support of two
overloaded LR B-splines but yet such LR B-splines are just overloaded and
not in a linear dependence relation. Therefore, the Peeling algorithm can
prove that the LR B-splines on an LR-mesh are linearly independent, but
it cannot prove that they are linearly dependent.

The tensor expansion does not scale well, in terms of computational costs,
with increasing problem sizes, but it has the advantage to handle all possible
LR-meshes, as opposed to the hand-in-hand principle and Peeling algorithm.
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Algorithm 1.1: Peeling Algorithm
1 From the set of LR splines BLR(N ) create the set BO of overloaded LR

B-splines;
2 Let EO be the elements of E in the supports of the LR B-splines in BO;
3 Initialization of a subset BO1 of BO we are going to define, BO1 = ∅;
4 for every element β in EO do
5 if only one LR B-spline B of BO has β in its support then
6 BO1 = BO1 ∪ {B}

7 if BO\BO1 = ∅ then
8 linear independence.
9 else

10 if BO1 = ∅ then
11 break, but might have linear dependence.
12 BO = BO\BO1 ;
13 Go to 2;

However, it is possible to combine these techniques. For example, one could
narrow the possible areas of linear dependence down to only a subset of the
LR-mesh using the Peeling algorithm and then apply tensor expansions only to
these areas for a complete verification of the linear independence.

On the other hand, a characterization and/or a classification of the linearly
dependent configurations would allow the creation of mesh refinement processes
that guarantee the linear independence of the final MS and LR B-spline collections.
This is the motivation for Paper 1.

1.2.3 Local linear independence and N2S property

The local linear independence is a strong property of bivariate B-splines and it
is useful for many applications, such as quasi-interpolation and simulation. The
generalization of it to LR B-splines context requires a particular displacement of
the LR B-splines support.

Definition 1.2.6. Given an LR-mesh N , let B[xxx1, yyy1], B[xxx2, yyy2] be two different
MS B-splines defined on N . We say that B[xxx2, yyy2] is nested in B[xxx1, yyy1], and
we write B[xxx2, yyy2] � B[xxx1, yyy1], if the multiplicities of z in xxxi and yyyi for i = 1, 2,
called µxxxi(z) and µyyyi(z), satisfy

1.


µxxx2(z) ≥ µxxx1(z) ∀ z ∈ (x2

1, x
2
p1+2)

µyyy2(z) ≥ µyyy1(z) ∀ z ∈ (y2
1 , y

2
p1+2)

2.


µxxx2(z) ≤ µxxx1(z) ∀ z ∈ (−∞, x1

1] ∪ [x1
p1+2,+∞)

µyyy2(z) ≤ µyyy1(z) ∀ z ∈ (−∞, y1
1 ] ∪ [y1

p1+2,+∞).
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If z is not a knot in the considered knot vector, its multiplicity is assigned to be
zero. An open LR-mesh N where no LR B-spline is nested is said to have the
non-nested support property, or in short the N2S property.

Given an LR-mesh N , we have locally linearly independent LR B-splines
defined on N if and only if N has the N2S property, as stated in the following
Theorem.

Theorem 1.2.7 ([2, Theorem 4]). Given an open LR-mesh N = (M, µ,ppp) with
M corresponding to a box-partition E, let BLR(N ) be the set of LR B-splines
defined on N . The following statements are equivalent:

1. The elements of BLR(N ) are locally linearly independent.

2. N has the N2S property.

3. For any element β ∈ E, the number of nonzero LR B-splines over β satisfies

#{B ∈ BLR(N ) : suppB ⊇ β̊} = dim Πppp = (p1 + 1)(p2 + 1),

that is, all the elements of the box-partition associated to M are non-
overloaded.

4. The LR B-splines form a partition of unity (without the use of scaling
weights).

Definition 1.2.6 of nested MS B-spline was formulated in [1]. In the following
proposition we provide an equivalent definition, which is considered by the author
to be easier to understand and to use in practice.

Proposition 1.2.8. Given an LR-mesh N = (M, µ,ppp), let B1 = B[xxx1, yyy1] and
B2 = B[xxx2, yyy2] be MS B-splines defined on N . Then B2 � B1 if and only if

1. suppB2 ⊆ suppB1, and

2. µ[xxx2, yyy2](γ) ≤ µ[xxx1, yyy1](γ) for all meshlines γ ⊆ ∂suppB1 ∩ ∂suppB2.

Proof. Suppose B2 � B1. Let us first prove that suppB2 ⊆ suppB1. This
means that [x2

1, x
2
p1+2] ⊆ [x1

1, x
1
p1+2] and [y2

1 , y
2
p2+2] ⊆ [y1

1 , y
1
p2+2]. Assume that

x2
1 < x1

1. Then µxxx1(x2
1) = 0 and µxxx2(x2

1) ≥ µxxx1(x2
1). This a contradiction of 2. in

Definition 1.2.6. Therefore x2
1 ≥ x1

1. Similarly one proves the other inequalities
to have the interval inclusions. Let now γ ⊆ ∂suppB1 ∩ ∂suppB2. Assume
without loss of generality that it is a 1-meshline. Then γ is a (1, z)-meshlines
for z ∈ {x1

1, x
1
p1+2}. For any choice of such z, we have µxxx2(z) ≤ µxxx1(z), by 2. of

Definition 1.2.6, and therefore µ[xxx2, yyy2](γ) ≤ µ[xxx1, yyy1](γ).
Assume now that suppB2 ⊆ suppB1 and µ[xxx2, yyy2](γ) ≤ µ[xxx1, yyy1](γ) for all

γ ⊆ ∂suppB1 ∩ ∂suppB2. Let us prove that B2 � B1. Let z ∈ (x2
1, x

2
p1+2).

Since suppB2 ⊆ suppB1 we have (x2
1, x

2
p1+2) ⊆ (x1

1, x
1
p1+2). If z /∈ xxx1, then

µxxx1(z) = 0 and therefore µxxx2(z) ≥ µxxx1(z) for any value of µxxx2(z). If z ∈ xxx1,
then it must be also in xxx2, otherwise the (1, z)-split {z} × [y1

1 , y
1
p2+2] would
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Figure 1.10: Example of LR-meshes with the N2S property produced by the
algorithm proposed in [2] with refinements localized in "random" regions.

traverse B2, which would not have minimal support. For the same reason, it
must also hold µxxx2(z) = µxxx1(z). This proves 1. of Definition 1.2.6. Assume
now z ∈ (−∞, x1

1) ∪ (x1
p2+2,+∞). Since suppB2 ⊆ suppB1, x1

1 ≤ x2
1 and

x2
p1+2 ≤ x1

p1+2. Therefore both µxxx1(z) = µxxx2(z) = 0. If z ∈ {x1
1, x

1
p1+2} but

z /∈ xxx2, then trivially µxxx2(z) ≤ µxxx1(z). If z ∈ xxx2, then z corresponds to (1,z)-
meshlines in ∂suppB1 ∩ ∂suppB2. By assumption, for any of such meshline γ
it holds µ[xxx2, yyy2](γ) ≤ µ[xxx1, yyy1](γ), which means µxxx2(z) ≤ µxxx1(z). This proves 2.
of Definition 1.2.6. �

It is a hard task to define refinement strategies producing LR-meshes with
the N2S property. In [2] an algorithm to generate such LR-meshes is proposed.
Although it creates nicely graded LR-meshes, see e.g. Figure 1.10, it has a
relevant drawback for practical purposes: the regions to be refined and the
maximal resolution, that is, the sides of the smallest box-partition elements on
the final LR-mesh, have to be chosen a priori. Moreover, the algorithm cannot
be stopped prematurely, before having inserted all the splits determined initially.
In practice, one rarely knows in advance where the error will be large and how
fine the mesh has to be in order to reduce it under a certain tolerance.

The purpose of Paper 2 is to provide the first truly adaptive refinement
strategy that guarantees the N2S property of the LR-meshes produced and
therefore the local linear independence of the LR B-splines defined on them.
This refinement strategy, which we refer to as N2S structured mesh refinement,
allows an easier implementation of the LR B-splines in quasi-interpolation
methods and isogeometric analysis.
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(a) (b)

(c) (d)

Figure 1.11: From a point cloud to its spline approximation. In (a) the point
cloud. In (b) a first triangulation S of the point cloud. In (c) a triangular mesh
T obtained from a mesh parametrization of S. In (d) the final spline surface
approximation. Pictures courtesy of Michael S. Floater.

1.3 Generalized barycentric coordinates and mesh
parametrization

Many applications require the creation of a CAD model by approximating, via
spline surfaces, a set of distinct points, {xxx1, . . . ,xxxn} ⊆ R3, acquired e.g. by
scanning an existing physical object. These points are often, at first, organized in
a triangulation S. Then, in order to obtain a spline surface, such a triangulation
has to be "unfolded" to a triangular mesh T on the plane. More precisely, this
"unfolding process" is a mesh parametrization. Provided a mesh parametrization,
there are several ways to approximate the vertices of S by a spline surface relying
on their parameter points, which are, the vertices of T , e.g. [11, 17, 25]. The
steps of this procedure are visually represented in Figure 1.11.

A general method to construct a mesh parametrization (homeomorphic to a
disk) was first described in [32] and further analyzed in [11, 13]. Let V and E be
the sets of vertices and edges of S. Let also ΩS ⊆ R3 be the union of the triangles
in S. A mesh parametrization is a piecewise linear function ψ : ΩS → R2 which
maps each vertex, edge and triangle of S to a corresponding vertex, edge and
triangle in R2. Such a mapping is completely determined by the the points ψ(vvv),
vvv ∈ V . The procedure is the following. First the boundary vertices and edges
of S are mapped into a polygon in R2 with no self intersections, e.g. a square.
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Then, if VI denote the interior vertices of S, for vvv ∈ VI , we define the "1-ring
neighbourhood" of vvv as

Nvvv = {www ∈ V : [vvv,www] ∈ E},

and we choose strictly positive weights {λvvvwww ∈ (0, 1) : www ∈ Nvvv}, such that∑
www∈Nvvv

λvvvwww = 1.

Once these are set, we determine the value of ψ(vvv) in R2, for vvv ∈ VI , by solving
the linear system

ψ(vvv) =
∑
www∈Nvvv

λvwvwvwψ(www) vvv ∈ VI .

It is proved in [12, Proposition 1] that such system has a unique solution for any
set of positive convex weights λvwvwvw, for all vvv ∈ VI . The choice of them determines
the mesh parametrization. As opposed to [32], in which the λvwvwvw are uniformly
defined as 1/|Nvvv|, a popular choice is to use weights that have the so called
reproduction property: if vvv and its neighbours www ∈ Nvvv lie in a plane then

vvv =
∑
www∈Nvvv

λvwvwvwwww.

Such a condition guarantees that the mesh parametrization ψ is locally an
isometry whenever possible [13, Section 6.3], and therefore the shape of the
triangles in T tends to mimic the shape of the triangles in S. This eventually
leads to a better spline surface approximation.

It is then natural to use generalized barycentric coordinates in this context to
determine weights with the reproduction property. In particular, the use of the
mean value coordinates for mesh parametrization is widely spread because of their
fast and direct computation and the fact that the resulting mesh parametrization
will depend smoothly on the vertices of the triangulation.

1.3.1 Mean value coordinates

In 1678, Giovanni Ceva [4] proved that for any point xxx inside a planar triangle
T = [vvv1, vvv2, vvv3], there exist three positive numbers, or masses, w1, w2, w3 such
that

xxx =
3∑
i=1

wivvvi

/ 3∑
i=1

wi. (1.8)

Later, in 1827 August F. Möbius generalized Equation (1.8) to simplices
in any dimension and, by considering also negative wi, to any xxx, see [27].
The coefficients wi, for i = 1, 2, 3, are often called homogeneous barycentric
coordinates of xxx and, by their definition, they are unique up to a common
factor. The barycentric coordinates of xxx are defined as the normalization of
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the homogeneous barycentric coordinates by their sum, and therefore they are
unique:

λi(xxx) = wi

/ 3∑
i=1

wi i = 1, 2, 3, (1.9)

By their definition, the barycentric coordinates have the following properties:

• positivity: λi(xxx) ≥ 0 for i = 1, 2, 3, for all xxx ∈ T ,

• partition of unity:
∑3
i=1 λi(xxx) = 1, for all xxx ∈ R2,

• reproduction:
∑3
i=1 λi(xxx)vvvi = xxx for all xxx ∈ R2,

• Lagrange property: λi(vvvj) = δij for i, j ∈ {1, 2, 3}.

There are several ways to generalize the barycentric coordinates to an arbitrary
polygon of n vertices, see e.g. [10, 26, 29, 33, 34]. However, for most choices,
the resulting generalized barycentric coordinates either are not well-defined
everywhere in R2 or do not satisfy the constraints of the Lagrange property.
On the other hand, the mean value coordinates [10, 18] fulfill both conditions
and have a number of other important properties, such as (infinite) smoothness,
linear independence, and refinability.

Definition 1.3.1. Let Ω ⊆ R2 be a polygon of n ≥ 3 vertices, vvv1, . . . , vvvn, ordered
anticlockwise. Let ei = [vvvi, vvvi+1], for i = 1, . . . , n− 1, and en = [vvvn−1, vvv1] be the
edges of Ω and nnnei be the outward unit normal to edge ei, for i = 1, . . . , n. For
any xxx ∈ R2, let ri = ‖vvvi−xxx‖, αei(xxx) be the angle at xxx in the triangle [xxx,vvvi, vvvi+1]
and let hei(xxx) be the signed distance of xxx to the straight line through the edge
ei, so that

hei(xxx) = (yyy − xxx) ·nnnei for a fixed point yyy ∈ ei.

Finally, let τei(xxx) = sign(hei(xxx)). Define

wi(xxx) = 1
ri

(
τei−1(xxx) tan(αei−1(xxx)/2) + τei(xxx) tan(αei(xxx)/2)

)
. (1.10)

The mean value coordinates of Ω are the functions λi : R2 → R for
i = 1, . . . , n with

λi(xxx) =


wi(xxx)

/∑n
i=1 wi(xxx) for xxx /∈ ∂Ω with wi(xxx) defined in Eq. (1.10),

(1− µ)δij + µδi(j+1) for xxx ∈ ej , xxx = (1− µ)vvvj + µvvvj+1 for µ ∈ [0, 1].

Figure 1.12(a) shows the notation used in Definition 1.3.1 for a particular
choice of point and polygon.

Note that if Ω is convex and xxx ∈ Ω then τei(xxx) = 1 for all i = 1, . . . , n and
we can drop them in the expression of the wi(xxx). More in general τei(xxx) = 1
for all xxx in the kernel of Ω, which is the set of points xxx ∈ Ω such that the
segments [xxx,vvvi] for i = 1, . . . , n are in Ω. If Ω has non-empty kernel, then Ω
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ri

ri−1

nnnei

vvvi−1

vvvi

xxx αei(xxx)

(a)

kernel

(b)

Figure 1.12: The notation used in Definition 1.3.1 (a) and the kernel of the
considered polygon (b).

is called star-shaped. In particular if Ω is convex, then it is star-shaped and
coincides with its kernel. An example of a kernel of a non-convex, star-shaped
polygon is reported in Figure 1.12(b). In the following proposition we list the
main properties of the mean value coordinates.

Proposition 1.3.2 ([18, Corollary 4.8]). Given a polygon Ω ⊆ R2 of n ≥ 3
vertices, vvv1, . . . , vvvn, ordered anticlockwise. The mean value coordinates λi, for
i = 1, . . . , n have the following properties:

• positivity: λi(xxx) ≥ 0 for xxx in the kernel of Ω,

• partition of unity:
∑n
i=1 λi(xxx) = 1 for all xxx ∈ R2,

• reproduction: xxx =
∑n
i=1 λi(xxx)vvvi for all xxx ∈ R2,

• Lagrange property: λi(vvvj) = δij,

• smoothness: λi is C∞ everywhere, except at the vertices of Ω, where it is
C0,

• linear independence: if
∑n
i=1 ciλi(xxx) = 0 for all xxx ∈ R2, then all ci = 0

must be zero,

• refinability: if we refine Ω to Ω̂ by splitting edge ej at v̂vv = (1−µ)vvvj+µvvvj+1,
then λj = λ̂j + (1− µ)λ̂, λj+1 = λ̂j+1 + µλ̂, and λi = λ̂i for i 6= j, j + 1,

• similarity invariance: if ψ is a similarity and Ω̂ = ψ(Ω), then λi(xxx) =
λ̂i(ψ(xxx)).

Note that, in particular, the partition of unity and reproduction properties
imply that the mean value coordinates have affine precision, that is, for any
affine function φ : R2 → Rd, it holds

n∑
i=1

λi(xxx)φ(vvvi) = φ(xxx). (1.11)
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The mean value coordinates have been also defined for sets of (possibly nested)
polygons [18] and in the kernel of polyhedra with triangular facets in 3D [14].

1.3.2 Transfinite mean value interpolation

One of the main uses of generalized barycentric coordinates is to interpolate
data fi ∈ Rd prescribed at the vertices of a polygon Ω with a smooth function
g : Ω→ Rd,

g(xxx) =
n∑
i=1

λi(xxx)fi. (1.12)

This kind of barycentric interpolation has been used, for example, in computer
graphics, as the basis for image warping [18], and in higher dimension, for mesh
deformation [24].

This interpolant construction extends in a natural way to any continuous
boundary data f : ∂Ω→ Rd, prescribed at the boundary of a general domain
Ω, thus providing a transfinite interpolant [8, 21]. Specifically, suppose that
the boundary of Ω is represented as a closed parametric curve ppp : [a, b] → R2,
with ppp(b) = ppp(a). Then, any sequence of parameter values t1, . . . , tn, with
a ≤ t1 < . . . < tn < b defines a polygon Ωh, where h = max(ti+1 − ti), with
vertices vvvi = ppp(ti). The barycentric interpolant (1.12) with respect to this
polygon is then

gh(xxx) =
n∑
i=1

λi(xxx)f(ppp(ti)).

If the limit g = limh→0 gh exists, then it has the form:

g(xxx) =
∫ b

a

λ(xxx, t)f(ppp(t))dt.

In the case of the mean value interpolation, λ(xxx, t) is well-defined and, analogously
to the discrete case, has expression

λ(xxx, t) = w(xxx, t)
/∫ b

a

w(xxx, t)dt

where w(xxx, t) is

w(xxx, t) = (ppp(t)− xxx)× ppp′(t)
‖ppp(t)− xxx‖3 .

Transfinite interpolation could have various applications, one of which is its use
as a building block for interpolants of higher order that also match derivative
data on the boundary. However, there is currently no mathematical proof of
interpolation in the transfinite setting in all cases, only numerical evidence. In
fact, interpolation was shown in [8] only under the condition that the distance
between the external medial axis of Ω and the domain boundary is strictly
positive. The external medial axis of Ω is the set of points in ΩC having more
than one closest point on ∂Ω, or, in other words, it is the locus of the centers
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(a) (b) (c)

Figure 1.13: External medial axis (dashed lines) for three different domains. In
(a)–(b) the distance between the external medial axis and the domain boundary
is positive, while in (c) it is zero due to the presence of a non-convex vertex.

of circles in ΩC that are tangent to ∂Ω in two or more points. Examples of
external medial axes are depicted in Figure 1.13. The condition of [8] to prove
interpolation trivially holds for convex domains since there is no external medial
axis in this case. However, it still leaves open the question of whether the
transfinite mean value interpolant really interpolates any continuous data on the
boundary of an arbitrary polygon, with non-convex vertices, and this is what is
established in Paper 3.

1.4 Summary of Papers

Paper I provides geometric necessary conditions to encounter a linear depen-
dence relation in the MS and LR B-spline sets.

Definition 1.4.1. We say that functions φ1, . . . , φn : R2 → R are actively
linearly dependent on R2 if there exist αi ∈ R, αi 6= 0 for all i = 1, . . . , n,
such that

n∑
i=1

αiφi(xxx) = 0, ∀xxx ∈ R2.

As opposed to the definition of linearly dependent functions, Definition
1.4.1 forbids zero coefficients in the linear dependence relation, paying
attention only to the minimal set of linearly dependent functions.
Given an LR-mesh, suppose B ⊆ BMS(N ), or BLR(N ) respectively, is a
subcollection of actively linearly dependent functions. Then

• defining R = ∪B∈B suppB as the region on R2 where the linear
dependence relation among the B-splines in B occurs, there exist
B1, B2 ∈ B such that B2 � B1 at every (convex) corner of R,

• there exist at least 4 T-vertices, one per orientation, inside R̊
corresponding to pairs of knots in B-splines of B,
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• each such T-vertex is shared by at least two B-splines in B.

By using these conditions we also prove that

• the minimal number of MS B-splines necessarily actively involved
in a linear dependence relation is 6, while for LR B-splines it is 8,
regardless of the bidegree chosen,

• these numbers are sharp for any bidegree (p1, p2) in the MS B-spline
set and with pk ≥ 2 for some k, for the LR B-splines.

Finally, Paper 1 shows how to use the necessary condition on the T-vertices
to improve the Peeling algorithm (Algorithm 1.1) in order to sort out more
cases.

Paper II defines a new and easy to implement local refinement strategy,
called N2S structured mesh refinement, that guarantees the local linear
independence of the final LR B-spline set. This strong property requires
a particular displacement of the LR B-spline supports on the underlying
locally refined mesh and it has never been achieved before for truly adaptive
refinements. The paper contains two application sections to illustrate the
qualities of the refinement strategy in quasi-interpolation and simulation
contexts.

Paper III investigates the transfinite mean value interpolant in a general (non-
convex) polygon for continuous function along the boundary of the polygon,
and shows that it has the property of transfinite interpolation, that is,
it coincides with the data on the boundary. This fact was only known
before for convex polygons and, more in general, for domains with positive
distance to their external medial axis. In addition to the proof of this
property, numerical examples illustrate it.
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I

Abstract

The focus on locally refined spline spaces has grown rapidly in recent
years due to the need in Isogeometric Analysis (IgA) of spline spaces with
local adaptivity: a property not offered by the strict regular structure
of tensor product B-spline spaces. However, this flexibility sometimes
results in collections of B-splines spanning the space that are not linearly
independent. In this paper we address the minimal number of Minimal
Support B-splines (MS B-splines) and of Locally Refined B-splines (LR
B-splines) that can form a linear dependence relation. We show that such
minimal numbers are six for MS B-splines and eight for LR B-splines.
Further results are established to help detecting collections of B-splines
that are linearly independent.

I.1 Introduction

In 2005 Thomas J.R. Hughes et al. [12] proposed to reconstitute finite element
analysis (FEA) within the geometric framework of CAD technologies. This gave
rise to Isogeometric Analysis (IgA). It unifies the fields of CAD and FEA by
extending the isoparametric concept of the standard finite elements to other
shape functions, such as B-splines and non-uniform rational B-splines (NURBS),
used in CAD. This does not only allow for an accurate geometrical description,
but it also improves smoothness properties. As a consequence, IgA methods often
reach a required accuracy using a much smaller number of degrees of freedom
[11]. Moreover, in some situations, the increased smoothness also improves the
stability of the approximations resulting in fewer nonphysical oscillations [12,
15].
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However, in numerical simulations, local (adaptive) refinements are frequently
used for balancing accuracy and computational costs. Traditional B-splines and
NURBS spaces are formulated as tensor products of univariate B-spline spaces.
This means that refining in one of the univariate B-spline spaces will cause the
insertion of an entire new row or column of knots in the bivariate spline space,
resulting in a global refinement. In order to break the tensor product structure
of the underlying mesh, new formulations of multivariate B-splines have been
introduced addressing local refineability.

I.1.1 Overview of locally refined spline methods

The first local refinement method introduced were the Hierarchical B-splines,
or HB-splines [8], whose properties were further analyzed in [13]. The HB-
splines are linearly independent and non-negative. However, partition of unity,
which is a necessary for the convex hull property (essential for interpreting
the B-spline coefficients as control points), was still missing. To rectify this,
Truncated Hierarchical B-splines, or THB-splines, were proposed in [10] and
further analyzed in [9]. In [9] they show how the construction of HB-splines can
be modified while preserving the properties of HB-splines, gaining the partition
of unity and smaller support of the basis functions.

A different approach, for local refinement, was introduced in [18] with the T-
splines. These are defined over T-meshes, where T-junctions between axis aligned
segments are allowed. T-splines have been used efficiently in CAD applications,
being able to produce watertight and locally refined models. However, the use
of the most general T-spline concept in IgA is limited by the risk of linear
dependence of the resulting splines [1]. It is desirable in numerical simulations
to use linearly independent basis functions to ensure that the resulting mass and
stiffness matrices have full rank and avoid the algorithmic complexity posed by
singular matrices. Analysis-Suitable T-splines, or AST-splines, were therefore
introduced in [2]. As T-splines, AST-splines provide watertight models, obey
the convex hull property, and moreover are linearly independent.

There are many other definitions of B-splines over meshes with local
refinements, such as PHT-splines [4], PB-splines [7] and LR B-splines [5]. A
discussion of the differences and similarities of HB-splines, THB-splines, T-splines,
AST-splines and LR B-splines can be found in [6].

I.1.2 LR B-splines and MS B-splines

In this paper we look at Locally Refined B-splines, or LR B-splines, introduced
in [5]. The idea is to extend the knot insertion refinement of univariate B-splines
to insertion of local line segments in tensor meshes. The process starts by
considering the tensor product B-spline space over a coarse tensor mesh. Then,
when a new inserted local line segment divides the support of one or more LR
B-splines in two parts, we perform knot insertion to split such B-splines into
two (or more) new ones. The final collection of functions does not sum to one in
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general. However, it is possible to scale them by means of positive weights so
that they form a partition of unity; see [5, Section 7].

The LR B-splines are a subset of the Minimal Support B-splines, or MS
B-splines. As one can guess from their name, MS B-splines are the tensor product
B-splines with minimal support, i.e., without superfluous line segments crossing
their support, identifiable on the locally refined mesh. The main difference
between LR and MS B-splines is that the former ones are defined algorithmically,
while the latter are defined by the topology of the mesh.

I.1.3 Content of the paper

The freedom in the refinement process can result in undesirable collections of
LR B-splines. Namely, the LR B-splines obtained at the end of the refinement
process may be linearly dependent. Assumptions on the refinement process have
to be established in order to ensure linear independence. We start such analysis
by looking at conditions on the mesh necessary for linear dependence. We say
that functions φ1, . . . , φn : Rd → R are actively linearly dependent on Rd if
there exist αi ∈ R, αi 6= 0 for all i = 1, . . . , n, such that

n∑
i=1

αiφi(xxx) = 0, ∀ xxx ∈ Rd.

Note that we consequentially look at the minimal set of linearly dependent
functions by forbidding zero coefficients in the linear combination.

In this work we show that:

• For any bidegree ppp, the minimal number of active MS B-splines in a linear
dependence relation is six, while for LR B-splines it is eight.

• These numbers are sharp for any bidegree ppp = (p1, p2) for the MS B-splines
and with pk ≥ 2, for some k ∈ {1, 2}, for the LR B-splines.

We look at the minimal configurations of linear dependence because we conjecture
that any linear dependence relation is a refinement of one of these minimal cases.
In other words, they are the roots for the linear dependence. In particular, if this
is true, by avoiding the minimal cases, the MS B-splines and LR B-splines are
always linearly independent and form a basis. Furthermore, to get such lower
bounds, we prove results that can be used to understand if the set of B-splines
considered is linearly independent or not. In particular, they can be used to
improve the Peeling Algorithm [5, Algorithm 6.3] to verify if the LR B-splines
defined on a given mesh are linearly independent.

I.1.4 Structure of the paper

In Section I.2 we provide an introduction to the concepts of box-partitions,
meshes and LR-meshes. In Section I.3 we define the univariate spline space over
a knot vector sequence and the bivariate spline space over a box–partition and
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we recall the dimension formula presented in [16]. Then we discuss conditions on
the mesh for ensuring that the dimension formula depends only on the topology
of the mesh. In Section I.4 we recall univariate and bivariate B-splines, their
basic properties and the knot insertion procedure. In Section I.5 we define
the MS B-splines and the LR B-splines and we show when these two sets are
different. In Section I.6 we study the spanning properties of the LR and MS
B-splines. In particular we state necessary and sufficient conditions for spanning
the full spline space. Knowing the dimension of the spline space, we can check
linear dependencies just by counting the elements in the LR, or MS, B-spline set.
In Section I.7, we identify necessary features for a linear dependence relation
and we derive the minimal number of active MS B-splines needed in a linear
dependence relation. In Section I.8, we compute the minimal number of active
LR B-splines in a linear dependence relation. In Section I.9 we recall briefly the
Peeling Algorithm for checking linear independence and we show how to improve
it by using the results of Section I.7. Finally, we summarize the main results
and discuss future work in Section I.10.

I.2 Box-partitions and LR-meshes

The purpose of this section is to describe box-partitions in 2D and define bivariate
LR-meshes. For our scope, and sake of simplicity, we decided to restrict general
definitions, valid in any dimension, to the 2D case; we refer to [5] for the general
theory.

Definition I.2.1. Given an axis-aligned rectangle Ω ⊆ R2, a box-partition of
Ω is a finite collection E of axis-aligned rectangles in Ω, called elements, such
that:

1. β̊1 ∩ β̊2 = ∅ for any β1, β2 ∈ E , with β1 6= β2.

2.
⋃
β∈E β = Ω.

Definition I.2.2. Given a box-partition E , we define the vertices of E as the
vertices of its elements. In particular, a vertex of E is called T-vertex if it is
the intersection of three elements edges. We denote as V the set of vertices of E .

Definition I.2.3. Given a box-partition E of a rectangle Ω ∈ R2, a meshline
of E is a segment contained in an element edge, connecting two and only two
vertices of V at its end-points. The collection of all the meshlines of the box-
partition is called mesh, M. Given a meshM, one can define a multiplicity
function µ : M → N∗ that associates a positive integer to every meshline,
called multiplicity of the meshline. A mesh that has an assigned multiplicity
function µ is called µµµ-extended mesh.

When the T-vertices of E occur only on ∂Ω and every collinear meshlines
have same multiplicity, the corresponding µ-extended mesh is called tensor
mesh.

Finally, if every meshline of a box-partition E has the same multiplicity m
we say that the corresponding µ-extended mesh has multiplicity m.
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Figure I.1: Example of box–partition and corresponding mesh.

In this work we only consider µ-extended meshes. Therefore, we will only
write meshes for µ-extended meshes to simplify the notation.

Figure I.1 shows an example of box-partition and associated mesh: in (a)
the box-partition E and in (b) the corresponding meshM. The meshlines are
identified by squares reporting the associated multiplicities.

A meshline can be expressed as the Cartesian product of a point in R and
a finite interval. Let α ∈ R be the value of such a point and let k ∈ {1, 2} be
its position in the Cartesian product. If k = 1 the meshline is vertical and if
k = 2 the meshline is horizontal. We sometimes write k-meshline to specify
the direction of the meshline and (k, α)-meshline to specify exactly on what
axis-parallel line in R2 the meshline lies.

Definition I.2.4. Given a box-partition E and an axis-aligned segment γ, we say
that γ traverses β ∈ E if γ ⊆ β and the interior of β is divided into two parts by
γ, i.e., β\γ is not connected. A split is a finite union of contiguous and collinear
axis-aligned segments γ = ∪iγi such that every γi either is a meshline of the
box-partition or γi traverses some β ∈ E .

As for meshlines, we sometimes write k-split with k ∈ {1, 2} to specify the
direction of the split or (k, α)-split to specify on what axis-parallel line in R2

the split lies, that is, to specify that it lies on the line {(x1, x2) : xk = α}.

Definition I.2.5. A meshM has constant splits if any split γ inM is made
of meshlines of the same multiplicity.

When a split γ is inserted in a box-partition E , any traversed β ∈ E is
replaced by the two subrectangles β1, β2 given by the closures of the connected
components of β\γ. The resulting new box-partition is indicated as E + γ and
its corresponding mesh as M + γ. Assigned a positive integer µγ to γ, the
multiplicities of the meshlines inM∩ (M+γ) not contained in γ are unchanged,
while the multiplicities of those that are in γ are increased by µγ . The new
meshlines contained in (M+ γ)\M have multiplicity equal to µγ . If µ was the
multiplicity function associated toM, the multiplicity function on the refined
meshM+ γ is denoted as µ+ µγ . The meshes used in applications are often
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Figure I.2: Example of computation of vertical and horizontal multiplicities.

result of a mesh refinement process, that is, given an initial coarse tensor mesh
M1 and a sequence of splits γi with associated integers µγi for i = 1, . . . , N − 1,
the meshes considered are the final element of a sequence of meshes of the form
Mi+1 = Mi + γi where the associated multiplicity are µi+1 = µi + µγi . The
LR–meshes are a particular subclass of this kind of meshes.

Definition I.2.6. An LR-mesh is a mesh M obtained through a sequence of
split insertions:

M1 is a tensor mesh,

Mi+1 =Mi + γi has constant splits, for i = 1, . . . , N − 1

andM =MN , for some N .

In the remaining of this section we introduce the knot vector on a split and
the length of it. These concepts will help us to analyze the spanning properties
of the LR B-splines and the increase in the spline space dimension due to a mesh
refinement.

Definition I.2.7. Given a meshM corresponding to a box-partition E , for any
vertex vvv in V we define

µ1(vvv) = max{µ(γ) : vvv ∈ γ and γ 1-meshline ofM}
µ2(vvv) = max{µ(γ) : vvv ∈ γ and γ 2-meshline ofM}

µ1(vvv) is called vertical multiplicity and µ2(vvv) horizontal multiplicity of
vertex vvv.

In Figure I.2 is reported an example of computation of horizontal and
vertical multiplicities for two vertices of a box–partition. The meshlines on
the left and right hand-side of vvv1 have multiplicity 1 and 2 respectively. So
µ2(vvv1) = max{1, 2} = 2. The meshlines above and below vvv1 have both
multiplicity 1, so that µ1(vvv1) = 1. Concerning vvv2, we have µ2(vvv2) = 2, whereas
µ1(vvv2) = max{1} = 1 since there is no meshline below vvv2.

Definition I.2.8. Given a (k, α)-split γ in a mesh M, all the vertices where γ
intersects the meshlines ofM, orthogonal to it, have kth-coordinate equal to
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α and different (3− k)th-coordinate. We define the knot vector on γ as the
increasing sequence τττ ⊆ R given by such (3− k)th-coordinates. The elements of
such sequence are called knots. We further define the multiplicity function of
the knot vector as the µ3−k multiplicity function of the corresponding vertices.
We say that τττ has length d if the multiplicities of its knots sum to d.

I.3 Spline spaces

In this section we define the univariate spline space over a knot vector and
the bivariate spline space over a box-partition. In particular we provide the
dimension formula of such spaces. For the bivariate space, the formula, introduced
in [16], presents terms depending on the size of the box–partition elements. This
means that the dimension is unstable, i.e., spline spaces on meshes with the
same topology might have a different dimension. Therefore, we recall sufficient
conditions for avoiding such terms, making the formula dependent only on the
mesh topology.

I.3.1 Spline space on a knot vector sequence

Definition I.3.1. Given an increasing sequence τττ = (τ1, . . . , τn) of real numbers,
a positive integer p and a function µ : τττ → N∗ such that 0 ≤ µ(τi) ≤ p+ 1 for all
i, we define the corresponding spline knot vector as the triple τττµp = (τττ , µ, p).

Given a spline knot vector τττµp , we say that τi ∈ τττ has full multiplicity if
µ(τi) = p+ 1 and we say that τττµp is open if τ1 and τn have full multiplicity.

Sometimes it is more convenient to write a spline knot vector, in the equivalent
way, as the couple tttp = (ttt, p) where ttt is a non–decreasing sequence ttt = (t1, . . . , t`),
i.e, with ti ≤ ti+1, where ` =

∑n
i=1 µ(τi) and

t1 = . . . = tµ(τ1)︸ ︷︷ ︸
= τ1

< tµ(τ1)+1 = . . . = tµ(τ1)+µ(τ2)︸ ︷︷ ︸
= τ2

< . . .

We use bold Greek letters with the multiplicity function in superscript in the
first way of expression and bold Latin letters for the second way.

Given a degree p, we denote as Πp ⊂ R[t] the vector space spanned by the
monomials tj such that 0 ≤ j ≤ p.

Definition I.3.2. Given a spline knot vector τττµp = (τττ , µ, p) with τττ = (τ1, . . . , τn),
we define the univariate spline space on the spline knot vector τττµp , denoted
S(τττµp ) or equivalently S(tttp), as the set of all functions f : R→ R such that

1. f is zero outside [τ1, τn],

2. the restrictions of f to the intervals [τi, τi+1) for i < n− 1 and [τn−1, τn]
are polynomials in Πp,

3. f is Cp−µ(τi)-continuous at τi.

39



I. Linear dependence of bivariate Minimal Support and Locally Refined
B-splines over LR-meshes

The following is the dimension of the spline space over a knot vector. It is a
well-known result, proved, e.g., in [17].

Theorem I.3.3. Given a spline knot vector τττµp = (τττ , µ, p) with τττ = (τ1, . . . , τn),
the corresponding spline space S(τττµp ) has dimension

dim S(τττµp ) = max
{

n∑
i=1

µ(τi)− (p+ 1), 0
}
. (I.1)

Therefore, if tttp has cardinality p+ r + 1 for some r ≥ 1, then dim S(tttp) = r.
There are many possible bases for S(tttp). One possibility is provided by a classical
result in spline theory, called Curry-Schoenberg Theorem [3, Theorem 44]. It
ensures that the so called B-spline functions of degree p, defined on the knot
vector tttp, can be used as a possible basis:

S(tttp) = span {B[tttip]}ri=1 with tttip = (ti, . . . , ti+p+1) ⊆ tttp.

For a brief introduction to B-splines we refer to Section I.4.

I.3.2 Spline space on a box-partition

Definition I.3.4. A spline mesh in R2 is a triple N = (M, µ,ppp) where M is
a mesh from a box–partition E , ppp = (p1, p2) is a pair of positive integers and
µ : M → N∗ is a multiplicity function such that 1 ≤ µ(γ) ≤ pk + 1 for every
k-meshline γ ∈M. In particular, if a k-meshline γ has multiplicity pk + 1 we say
that γ has full multiplicity and a spline mesh N is open if every boundary
meshline has full multiplicity. A spline mesh N whereM is an LR-mesh will be
called spline LR-mesh.

Remark I.3.5. Given a spline mesh N = (M, µ,ppp), one can define a spline knot
vector on any k-split ofM, for k ∈ {1, 2}: the sequence τττ and the multiplicity
function µ3−k are described in Definition I.2.8 and the degree is p3−k.

Given a bidegree ppp = (p1, p2), we denote as Πppp ⊂ R[x, y] the vector space
spanned by the monomials xi1yi2 such that 0 ≤ ik ≤ pk for k = 1, 2.

Definition I.3.6. Given a spline mesh N = (M, µ,ppp) corresponding to a box-
partition E of a rectangle Ω = [a1, b1]×[a2, b2], for any element β ∈ E , β = J1×J2
with Jk = [aβ,k, bβ,k], we set

β̃ = J̃1 × J̃2 with J̃k =

 [aβ,k, bβ,k) if bβ,k < bk

[aβ,k, bβ,k] if bβ,k = bk.
(I.2)

The spline space on N , denoted by S(N ), is the set of all functions f : R2 → R
such that

1. f is zero outside Ω,
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2. for each element β ∈ E , the restriction of f to β̃ is a bivariate polynomial
function in Πppp,

3. for each k-meshline γ ∈M, f is Cpk−µ(γ)-continuous across γ.

The general dimension formula of the spline space over spline meshes is
presented in [16] and has terms depending on the size of the box–partition
elements. This makes the dimension of the spline space unstable [14], i.e., not
only dependent on the mesh topology. However, if we consider the spline space
over a spline LR-mesh built so that

• LR-rule 1: the starting tensor meshM1 has at least p1 + 2 vertical splits
and p2 + 2 horizontal splits counting their multiplicities,

• LR-rule 2: for k ∈ {1, 2}, the knot vector on any maximal k-split has
length at least p3−k + 2 at any step in the construction of the LR-mesh,

then, one can prove, by using the results in [16], that, calledMk the set of all
the k-meshlines inM, for k ∈ {1, 2}, and |E| the cardinality of E , we have

dim S(N ) =
∑
vvv∈V

[(p1 − µ1(vvv) + 1)(p2 − µ2(vvv) + 1)]

− (p2 + 1)
∑
β∈M1

[(p1 − µ(β) + 1)]− (p1 + 1)
∑
β∈M2

[(p2 − µ(β) + 1)]

+ |E|(p1 + 1)(p2 + 1),
(I.3)

which depends only on the topology of the mesh. In this paper we will always
assume the LR-rules for constructing LR-meshes.
Remark I.3.7. In the LR-mesh building process, any extension of an older split
is allowed being LR-rule 2 satisfied on the new mesh.

From equation (I.3), it is possible to prove the dimension increasing
formula [5, Theorem 5.5]. Knowing dim S(N ), through this formula, one can
easily compute the dimension of the spline space on a refined spline mesh
N +γ := (M+γ, µ+µγ , ppp). First, we need to introduce the concept of expanded
spline knot vector on a split.

Definition I.3.8. When a spline mesh N = (M, µ,ppp) is refined by inserting a
k-split γ, since it is a split in M + γ, γ has a spline knot vector on it, τττµ3−k

p3−k ,
with assigned multiplicity µ3−k. The expanded spline knot vector on γ,
τττ
µ̃3−k
p3−k , has same sequence τττ , same degree p3−k and same multiplicity function
µ3−k except that, in case γ is an extension of a split ofM, it is assigned full
multiplicity to the point of τττ corresponding to the joint vertex of the extension.

In particular, if γ is an extension of two splits γ1, γ2 inM, i.e., γ is the link
between γ1, γ2, then the first and last knots in the expanded spline knot vector
on γ have full multiplicity.

We can now give the dimension increasing formula.
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Theorem I.3.9. Given a spline LR-mesh N and a new k-split γ such that the
expanded spline knot vector τττ µ̃3−k

p3−k on γ has length p3−k + r + 1 with r ≥ 1, then
the spline space on the refined spline mesh N + γ := (M + γ, µ + µγ , ppp) has
dimension

dim S(N + γ) = dim S(N ) + dim S(τττ µ̃3−k
p3−k

) = dim S(N ) + r.

I.4 Univariate B-splines and bivariate B-splines

In this section we recall the definition of B-splines and their main properties. In
particular, we state the knot insertion algorithm, which is used for the definition
of LR B-splines. For a complete overview on B-splines we refer to [3] and [17].

I.4.1 Univariate B-splines

Definition I.4.1. For a non-decreasing sequence ttt = (t1, t2, . . . , tp+2) we define a
B-spline B[ttt] : R→ R of degree p ≥ 0 recursively by

B[ttt](t) = t− t1
tp+1 − t1

B[t1, . . . , tp+1](t) + tp+2 − t
tp+2 − t2

B[t2, . . . , tp+2](t), (I.4)

where each time a fraction with zero denominator appears, it is taken as zero.
The initial B-splines of degree 0 on ttt are defined as

B[ti, ti+1](t) :=

 1 if ti ≤ t < ti+1;

0 otherwise;
for i = 1, . . . , p+ 1. (I.5)

The sequence ttt is called knot vector of B[ttt] and tj are its knots. A knot tj
has multiplicity µ(tj) if it appears µ(tj) times in ttt.

Proposition I.4.2 (Properties). Given a degree p ≥ 0 and a knot vector
ttt = (t1, . . . , tp+2),

• suppB[ttt] = [t1, tp+2],

• B[ttt] restricted to every nontrivial half-open element [ti, ti+1) is in Πp,

• B[ttt] is Cp−µ(tj)-continuous at any knot tj of multiplicity µ(tj).

Theorem I.4.3 (knot insertion). Given a degree p and a knot vector ttt =
(t1, . . . , tp+2), suppose we insert a knot t̂ ∈ (t1, tp+2). We obtain two knot
vectors ttt1 and ttt2, considering the first and the last p + 2 knots respectively in
(t1, . . . , t̂, . . . , tp+2). Then there exist α1, α2 ∈ (0, 1] such that

B[ttt] = α1B[ttt1] + α2B[ttt2]. (I.6)
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I.4.2 Bivariate B-splines

Definition I.4.4. Consider a bidegree ppp = (p1, p2). Let xxx = (x1, . . . , xp1+2) and
yyy = (y1, . . . , yp2+2) be nondecreasing sequences. We define the tensor product
B-spline B[xxx,yyy] : R2 → R by

B[xxx,yyy](x, y) := B[xxx](x)B[yyy](y), (I.7)

where B[xxx] and B[yyy] are the univariate B-splines defined on xxx and yyy respectively.

The pair xxx,yyy identifies a tensor mesh in [x1, xp1+2]× [y1, yp2+2],M[xxx,yyy]. In
fact, a knot in the x-direction xi corresponds to the 1-split

γ =
p2+1⋃
j=1

γj with γj = {xi} × [yj , yj+1]

and multiplicity µ[xxx,yyy](γj) equal to the multiplicity of xi in xxx, for all j. In the
same way the knots yj in yyy identify the 2-splits inM[xxx,yyy] and their assigned
multiplicities.

The properties of univariate B-splines are conserved by the tensor product
B-splines:

• suppB[xxx,yyy] = [x1, xp1+2]× [y1, yp2+2].

• B[xxx,yyy] is a piecewise bivariate polynomial of bidegree ppp.

• B[xxx,yyy] is Cpk−µ(γ)-continuous across each k-meshline γ ofM[xxx,yyy].

As in the univariate case, after the insertion of a knot x̂ in xxx, we define xxx1 and xxx2
considering in (x1, . . . , x̂, . . . , xp1+2) the first and last p1 + 2 knots respectively
and we can write B[xxx,yyy] in terms of two B-splines defined on the two new pairs
of knot vectors

B[xxx,yyy] = α1B[xxx1, yyy] + α2B[xxx2, yyy] with α1, α2 ∈ (0, 1]. (I.8)

The same holds when inserting a knot ŷ in yyy.
Finally, consider a spline mesh N = (M, µ,ppp) withM a tensor mesh. Then

there exist two spline knot vectors xxxp1 and yyyp2 that identifyM,M =M[xxxp1 , yyyp2 ],
as explained before for the tensor meshM[xxx,yyy] in the support of B[xxx,yyy]. Assume
that xxxp1 and yyyp2 have length p1+r1+1 and p2+r2+1 respectively, with r1, r2 ≥ 1.
We can apply the Curry-Schoenberg Theorem on each spline knot vector and
state that

S(N ) = span {B[xxxip1
, yyyjp2

]} with i = 1, . . . , r1 and j = 1, . . . , r2,

where xxxip1
= (xi, . . . , xi+p1+1) ⊆ xxxp1 and yyyjp2

= (yj , . . . , yj+p2+1) ⊆ yyyp2 .
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(a) (b) (c) (d)

Figure I.3: Support of B-splines of bidegree (2, 2) on an meshM of multiplicity
1. The mesh is shown in (a). The B-splines whose supports are depicted in (b)
and (c) have minimal support onM. The tensor meshes defined by their knots
in their supports are highlighted with thicker lines. On the other hand, the
B-spline in (d) does not have minimal support onM: the collection of meshlines
contained in the dashed line disconnects the support.

I.5 Minimal Support B-splines and Locally Refined
B-splines

In this section we define first the Minimal Support B-splines, or MS B-splines,
and then the Locally Refined B-splines, or LR B-splines. As we will see the LR
B-splines are created algorithmically, refining, after the insertion of a split in
the mesh, the B-splines whose support is traversed by the split through the knot
insertion procedure. The main difference with the MS B-splines is that these
latter are not always the result of a knot insertion. For a given bidegree, they
depend only on the position and multiplicities of the meshlines on the mesh.

Definition I.5.1. Given a bivariate B-spline B[xxx,yyy] and a split γ, we say that γ
traverses B[xxx,yyy] if suppB[xxx,yyy]\γ is not connected.

Definition I.5.2. Given a mesh M and a B-spline B[xxx,yyy], we say that B[xxx,yyy]
has support on M if the meshlines in M[xxx,yyy] can be obtained as unions
of meshlines in M, and their multiplicities in M[xxx,yyy] are less than or equal
to the multiplicities of the corresponding meshlines in M. Furthermore, we
say that B[xxx,yyy] has minimal support on M if it has support on M, the
multiplicities of the interior meshlines inM[xxx,yyy] are equal to the multiplicities
of the corresponding meshlines inM and there is no split γ inM\M[xxx,yyy] that
traverses B[xxx,yyy]. Given a spline mesh N = (M, µ,ppp), the set of the minimal
support B-splines, or MS B-splines, on N of bidegree ppp is denoted as BMS(N ).

Figure I.3 shows examples of B-splines of bidegree (2, 2) with support on a
mesh of multiplicity 1. In particular, the B-splines considered in Figure I.3(b)–(c)
have minimal support, while the support of the B-spline in Figure I.3(d) can be
disconnected by the split γ, visualized by dashed lines in the figure.

Given a mesh M and a B-spline B[xxx,yyy] with support in M, assume that
there exists a (k, α)–split γ inM\M[xxx,yyy] that traverses B[xxx,yyy]. Assume also
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that the meshlines in γ have all the same multiplicity m. One could then consider
α as an extra knot of multiplicity m in the kth knot vectors of B[xxx,yyy] (in xxx if
k = 1 and in yyy if k = 2) and perform the knot insertion on B[xxx,yyy]. The resulting
generated B-splines would still have support onM and eventually they would
also have minimal support onM. The LR B-splines are generated throughout
the construction of an LR-mesh following this procedure.

Definition I.5.3. Given a spline LR-mesh N = (M, µ,ppp) withM =MN final
mesh of a mesh sequence as described in Definition I.2.6, the LR B-spline set
BLR(N ) is provided algorithmically as follows. We start by considering the set
B1 of standard B-splines on the initial coarse tensor meshM1. Then, for any
intermediate stepMi+1 =Mi + γi with i = 1, . . . , N − 1 in the construction of
the LR–mesh, we produce a new set of B-splines Bi+1 by the following algorithm:

1. initialize Bi+1 ← Bi,

2. as long as there exists B[xxxj , yyyj ] ∈ Bi+1 with no minimal support onMi+1,

a) apply knot insertion:

∃B[xxxj1, yyy
j
1], B[xxxj2, yyy

j
2] : B[xxxj , yyyj ] = α1B[xxxj1, yyy

j
1] + α2B[xxxj2, yyy

j
2],

b) update the set: Bi+1 ← (Bi+1\{B[xxxj , yyyj ]}) ∪ {B[xxxj1, yyy
j
1], B[xxxj2, yyy

j
2]},

3. BLR(N ) := BN .

Remark I.5.4. For any spline LR-mesh N = (M, µ,ppp), spanBLR(N ) ⊆
spanBMS(N ) ⊆ S(N ). If M is a tensor mesh then BLR(N ) = BMS(N )
and they are nothing more than the standard bivariate B-splines. The Curry-
Schoenberg Theorem ensures that spanBLR(N ) = spanBMS(N ) = S(N ) and
the elements of BLR(M) = BMS(M) are linearly independent. However, there
are other cases where this equality holds; we will see them in the next section.

After performing the LR B-splines generation algorithm, the functions created
will generally not sum to one. For this reason, in [5, Section 7] is provided a
procedure for positive scaling weights of the LR B-splines to reinstate the
partition of unity.

Example I.5.5 (BLR(N ) 6= BMS(N )).
In Figure I.4(a) we have an LR-meshM of multiplicity 1. Suppose ppp = (2, 2).
This mesh is obtained by inserting two 2-splits and two 1-splits in a tensor mesh
M1. In Figure I.4(b) we see the supports of the LR B-splines onM, i.e., the
elements of BLR(N ), with N = (M, 1, (2, 2)), obtained by refining the B-splines
with no minimal support during the insertion of the splits. However if we look at
the final meshM in Figure I.4(a), we see that there is one MS B-spline, whose
support is depicted in Figure I.4(c), not in BLR(N ), defined on the mesh.
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(a)

(c)

, , ,

, , ,

, ,
(b)

Figure I.4: (a) an LR-meshM of multiplicity 1. (b) Supports of the biquadratic
LR B-splines defined onM. (c) Support of a minimal support B-spline on the
mesh but not in BLR(N ).

I.6 Hand-in-hand principle

In this section we describe the spanning properties of the sets BMS(N ) and
BLR(N ). Any LR-mesh M = MN is defined through a sequence Mi+1 =
Mi + γi starting from a tensor meshM1. We know that on N1 = (M1, µ1, ppp),
spanBMS(N1) = S(N1) as well as spanBLR(N1) = S(N1). We want to preserve
these equalities throughout the construction ofMN for two reasons. First, we
maximize the approximation power of the considered B-splines because the full
spline space is spanned, and second, since we have a dimension formula for the
spline space, we can use it to determine if the B-splines are linearly dependent or
not. Indeed, since they span the whole spline space, if there are more B-splines
than the dimension, they must be linearly dependent.

Definition I.6.1. Given a spline LR-mesh N = (M, µ,ppp), assume that
spanBMS(N ) = S(N ), or spanBLR(N ) = S(N ) respectively. Let γ be a
new split and let N + γ = (M+ γ, µ+µγ , ppp) be the refined spline mesh. We say
that N + γ goes MS-wise, or LR-wise respectively, hand-in-hand with N if
spanBMS(N + γ) = S(N + γ), or spanBLR(N + γ) = S(N + γ) respectively.

In other words, going hand-in-hand means that if the considered B-splines
on the spline mesh N span the whole spline space S(N ), then also the refined
B-splines defined on N + γ will span the refined spline space S(N + γ).
Remark I.6.2. If N +γ goes LR-wise hand-in-hand with N , then it also goes MS-
wise hand-in-hand with N . This is trivial because BLR(N + γ) ⊆ BMS(N + γ).
The converse is not true in general.

In order to keep spanning the spline space during the construction of an
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LR-mesh, we have to ensure that all the intermediate spline meshes go MS-wise,
or LR-wise, hand-in-hand. A condition to achieve this is stated in the following
result, which is a reformulation of [5, Theorem 5.10].

Theorem I.6.3. Let N = (M, µ,ppp) be a spline LR-mesh. Assume that
spanBMS(N ) = S(N ), or spanBLR(N ) = S(N ) respectively. Let γ be a
new k-split to insert and τττ µ̃3−k

p3−k be the expanded spline knot vector on it. Let
BMS(γ), or BLR(γ) respectively, be the collections of the new B-splines created
in the MS, or LR, B-spline set after the insertion of γ. For any B ∈ BMS(γ),
or B ∈ BLR(γ) respectively, let Bγ be the univariate B-spline in the y variable
if k = 1 or in the x variable if k = 2, in the expression of B as in Definition
I.4.4. Then N + γ goes MS-wise, or LR-wise respectively, hand-in-hand with N
if and only if

span {Bγ}B∈BMS(γ)(or BLR(γ) resp.) = S(τττ µ̃3−k
p3−k

).

Theorem I.6.3 allows to check the hand-in-hand of the meshes by looking at
the span of univariate B-splines. Note that, since all the Bγ are contained in
S(τττ µ̃3−k

p3−k ), we always have

dim span{Bγ}B∈BMS(γ)(or BLR(γ) resp.) ≤ dim S(τττ µ̃3−k
p3−k

).

We distinguish two cases when this is a strict inequality:

1. The cardinality of BMS(γ), or BLR(γ) respectively, is less than
dim S(τττ µ̃3−k

p3−k ),

2. the cardinality of BMS(γ), or BLR(γ) respectively, is at least equal to
dim S(τττ µ̃3−k

p3−k ) but the linearly independent univariate B-splines Bγ are less
than such dimension.

The cardinality of BMS(γ), or BLR(γ), depends on the mutual position of
the splits in M + γ. However, by slight modifications of the mesh or by
extending γ we can always guarantee that BMS(γ) and BLR(γ) have at least
dim S(τττ µ̃3−k

p3−k ) elements, as explained in Figure I.5. There we consider bidegree
ppp = (2, 2) and a 1-split γ to insert into the LR-mesh M of multiplicity 1 as
shown in Figures I.5(a). Since the expanded spline knot vector on γ has length
4, dim S(N + γ) = dim S(N ) + 1 by Theorem I.3.9. Therefore, a new B-spline of
the considered kind must be generated to have N + γ going MS-wise or LR-wise
hand-in-hand with N .

Unfortunately, no B-splines are created after the insertion due to the splits
mutual position. Thus BMS(N + γ) = BMS(N ), BLR(N + γ) = BLR(N ) and
N + γ cannot go neither LR-wise nor MS-wise hand-in-hand with N . However,
if we extend by one meshline a split on N , we create a new MS B-spline when
inserting γ, whose support is highlighted in Figure I.5(b). In this case, N + γ
goes MS-wise hand-in-hand (but not LR-wise). Instead, if we extend by two
meshlines the same split, as in Figure I.5(c), or we extend by one meshlines both
the splits, as in Figure I.5(d), there is an LR B-spline on the mesh to refine
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(a) (b) (c) (d) (e)

Figure I.5: (a) LR-mesh M of multiplicity 1 and a new split (dashed) to
insert. (b) modification ofM (dashed) to go MS-wise hand-in-hand. (c),(d),(e)
modification ofM (dashed) to go LR-wise hand-in-hand.

after the insertion of γ and N + γ goes LR-wise hand-in-hand with N . Another
strategy is to extend γ. Indeed, if we decide to insert γ one meshline longer,
as in Figure I.5(e), then the spline space increases by 2 for Theorem I.3.9 but
N + γ goes LR-wise, and so MS-wise, hand-in-hand with N because the two LR
B-splines with supports in the upper left and upper right corner ofM will be
refined.

However, although the cardinality of such sets is sufficiently large, the linearly
independent univariate B-splines Bγ can be insufficient for spanning the whole
spline space S(τττ µ̃3−k

p3−k ). An example is reported in Figure I.6. We again consider
bidegree (2, 2), an LR-meshM of multiplicity 1 and a new 2-split γ as shown in
Figure I.6(a).

The expanded spline knot vector on γ has length 7 so that dim S(N + γ) =
dim S(N ) + 4 by Theorem I.3.9. Moreover, it is easy to check that N can be
constructed LR-wise hand-in-hand. Therefore, BLR(N ) = BMS(N ) and they
span the spline space S(N ). When γ is inserted, there are 5 LR B-splines,
B1, B2, B3, B4, B5, in BLR(γ), whose support is depicted in Figure I.6(b). The
cardinalities |BLR(γ)|, |BMS(γ)| are therefore large enough for N +γ to go hand-
in-hand with N . However, if we look at the univariate B-splines Bγ , depicted in
Figure I.6(c), we can see that the B4

γ = B5
γ and B3

γ can be easily written, via
knot insertion, as a linear combination of B1

γ , B
2
γ . Thus, there are only 3 linearly

independent B-splines in {Bγ}B∈BLR(γ) and the spline mesh N + γ cannot go
neither LR-wise nor MS-wise hand-in-hand with N .

Nevertheless, if the expanded spline knot vector on γ has length p3−k + 2 or
p3−k + 3, this phenomenon cannot happen. Indeed, if it has length p3−k + 2, the
spline space on it has dimension one and there exists at least one Bγ . Similarly,
if it has length p3−k + 3, the spline space on it has dimension 2 and there are at
least two different (and so linearly independent) univariate restrictions Bγ .

I.7 Characterization of linear dependence in BMS(N )

The purpose of this section is to investigate the minimal number of MS B-splines
required for a linear dependence relation on a spline mesh N and features needed
in such configurations. In particular, the main results of this section are that at
least six MS B-splines are necessary for a linear dependence for any bidegree
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(a)

B4
γ = B5

γB2
γB3

γB1
γ

(c) (b)

Figure I.6: (a) LR-meshM of multiplicity 1 and a new 2-split γ (dashed) with
their intersections (black dots). Consider bidegree (2, 2). In (b) the supports of
the LR B-splines B1, B2 (top), B3 (center), B4, B5 (bottom) in BLR(γ). In (c)
their corresponding univariate B-splines.

ppp = (p1, p2) (Proposition I.7.15) and that in a configuration of linear dependence
with exactly six B-splines, one of them is not an LR B-spline (Proposition I.7.16).
We achieve these results by looking at the minimal number of B-splines needed
to satisfy necessary conditions for having a linear dependence relation. First
we introduce the nestedness condition (Proposition I.7.3): at any corner of the
region of the mesh where we have linear dependence, there is a B-spline in the
linear dependence relation whose support is fully contained in the support of
another larger B-spline in the linear dependence relation as well. This implies
that the number of B-splines involved in the linear dependence relation is at
least five (Corollary I.7.4). Then we have to prove that it is impossible to have
a linear dependence with only these five. Therefore, first we show the possible
arrangements of the supports in case a linear dependence relation has only five
B-splines (Lemma I.7.5). Then we introduce another necessary condition for
linear dependencies regarding the T–vertices in the region of the mesh where
the linear dependence occurs (Corollary I.7.10). This new condition narrows the
possible arrangements of the supports found in Lemma I.7.5. Finally, by looking
at the position of the five B-splines in this remaining configurations, one can
prove Proposition I.7.15 mentioned above.

Remark I.7.1. We recall that our meaning of linearly dependent functions is
slightly different from the standard definition. We consider only functions
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that are actively linearly dependent, i.e., that have nonzero coefficient in the
dependence relation.

Definition I.7.2. Given a mesh M and two MS B-splines B[xxx1, yyy1], B[xxx2, yyy2],
defined onM, we say that B[xxx1, yyy1] is nested into B[xxx2, yyy2] if suppB[xxx1, yyy1] ⊂
suppB[xxx2, yyy2] and suppB[xxx1, yyy1], suppB[xxx2, yyy2] share one, and only one, vertex.

Proposition I.7.3 (Nestedness condition). Let BMS(N ) be the set of MS B-
splines on a spline mesh N = (M, µ,ppp). Let B ⊆ BMS(N ) be a subset of linearly
dependent MS B-splines and R be the region in R2 given by the union of their
supports. Let (x̄, ȳ) be any (convex) corner in R and define µx̄ as the maximal
multiplicity that is assigned to x̄ among the knot vectors in the x-direction of the
B-splines in B. Consider the set

Bµx̄ := {B[xxx,yyy] ∈ B : x̄ ∈ xxx with µ(x̄) = µx̄}.

Define µȳ as the maximal multiplicity that is assigned to ȳ among the knot
vectors in the y-direction of the B-splines in Bµx̄ and consider the set

B′ = {B[xxx,yyy] ∈ Bµx̄ : ȳ ∈ yyy with µ(ȳ) = µȳ}.

Finally, define hx = minB∈B′ |xp1+2 − x1|, hy = minB∈B′ |yp2+2 − y1| and the
set of MS B-splines in B′ with smallest support, in both directions:

L = {B[xxx,yyy] ∈ B′ : |xp1+2 − x1| = hx and |yp2+2 − y1| = hy}.

Then

1. L has a unique B-spline B[xxxm, yyym],

2. There exists another B-spline B[xxx,yyy] ∈ B′ such that B[xxxm, yyym] is nested
into B[xxx,yyy].

Proof.

1. Let us first show that L 6= ∅. Consider the element of the box-partition
in R that has (x̄, ȳ) as vertex. If L = ∅, it would mean that such element
in the corner of R is contained in at least the supports of two B-splines
B1 = B[xxx1, yyy1], B2 = B[xxx2, yyy2] ∈ B′ such that B2 is taller than B1 but
narrower as reported in Figure I.7.
Thus, there are p2 + 2−µȳ horizontal splits of B1 traversing the interior of
suppB2. Only p2 + 1−µȳ of them (at most) can be also splits of B2. This
is a contradiction because an extra split traverses the support of B2 and
so it has not minimal support on the mesh. Hence |L| ≥ 1. Let us assume
there are two MS B-splines in L, B1 = B[xxx1, yyy1] and B2 = B[xxx2, yyy2]. So

x1
1 = x2

1 y1
1 = y2

1

x1
p1+2 = x2

p1+2 y1
p2+2 = y2

p2+2.
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B1
B2

(x̄, ȳ)

Figure I.7: The support of the two B-splines considered in the proof of Proposition
I.7.3.

If also the internal knots of B1 and B2 are the same in both directions,
it would mean that B2 = B1 and there is nothing to prove. Thus, let us
assume there is at least one different knot in the x- or y-direction. For
instance, suppose there is a different internal knot x2

i ∈ xxx2 for some i,
with respect to xxx1. Then the corresponding vertical split {x2

i }× [y2
1 , y

2
p2+2]

would traverse the support of B1. This is a contradiction because B1 has
minimal support.

2. Bm = B[xxxm, yyym] is in a linear dependence relation, so the smoothness of
it at x̄× R and R× ȳ must be reproduced. Therefore, there must exist at
least another B-spline in B′.
Such a MS B-spline B ∈ B′ cannot be fully contained in the support of
Bm because of the minimality of such support. Hence, suppB exceeds on
the right, or on the top, or both on the right and on the top, the support
of Bm. By using the same argument adopted to prove that |L| 6= ∅, one
shows that only the last case can happen. �

Therefore, in every corner of R there are at least two MS B-splines of the
linear dependence relation, one nested into the other. Note that this nestedness
condition cannot be satisfied if the mesh considered is an LR-mesh and the
bidegree is (0, 0). Indeed, nesting a B-spline into another during the LR–mesh
building process would imply to end a split in the middle of an element, which is
not allowed. Since Proposition I.7.3 is not verified, we conclude that the set of
MS (and LR) B-splines of degree (0, 0) is linearly independent on any LR-mesh.
On the other hand, it is possible to have nested MS B-splines at the corners of
R in general meshes, even for bidegree (0,0). Figure I.15 (k)–(l), at the end of
this section, will illustrate an example of linear dependence for MS B-splines of
bidegree (0,0).

Corollary I.7.4. We need at least 5 MS B-splines for a linear dependence relation
in BMS(N ).

Proof. R has at least four corners and there is a MS B-spline at each of them.
The minimal number needed for the nestedness condition is then 5, that is when
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B1 = R

B2

B3
B4

B5

Figure I.8: Configuration with 5 MS B-splines satisfying the nested supports
condition for linear dependence.

the 4 MS B-splines at the corners are all nested into the same MS B-spline whose
support coincides with R (see Figure I.8). �

The question now is if five MS B-splines are enough for a linear dependence
relation. From the previous results, we know that if so, we have four MS B-splines
with supports in the four corners of R and one larger MS B-spline with support
covering the entire region. The rest of this section is devoted to show that five
MS B-splines are not enough. For sake of simplicity, we keep the notation used
in Figure I.8. So B1 will be the larger MS B-spline whose support coincides with
R and B2, B3, B4, B5 are the MS B-splines at the corners ordered clockwise
starting from the lower left corner. The knot vectors of Bi, for i = 1, . . . , 5, will
be denoted as xxxi = (xi1, . . . , xip1+2) and yyyi = (yi1, . . . , yip2+2).

In order to have a linear dependence relation, in every point of R we must
have at least two MS B-splines different from zero. In the following Lemma we
present how this fact implies spatial relations of the supports in case the linear
dependence relation involves only B1, B2, B3, B4 and B5.

Lemma I.7.5. Suppose only five MS B-splines are in a linear dependence relation
on R. Then

1. the supports of B2 and B5 intersect each other as well as the supports of
B3 and B4,

2. the supports of B2 and B3 intersect each other as well as the supports of
B4 and B5,

3. at least one couple among suppB2, suppB4 and suppB3, suppB5 intersect
each other.

Proof. Every point in suppB1 must be inside the support of another B-spline
in the linear dependence relation, i.e., the supports of B2, B3, B4, B5 must be
such that there are no white spots left inside R in Figure I.8.

1. We notice that y2
1 = y5

1 and, by Proposition I.7.3, the y-widths of the
supports of B3 and B4 must be smaller than the y-width of R, i.e.,
y3

1 , y
4
1 > y1

1 . Let ȳ := min{y3
1 , y

4
1}. There exists an horizontal band,
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B3
B4

ȳ

y2
1 = y5

1

(a)

¯̄y
B2

B3
B4

B5

y2
1 = y5

1
(x, y)

(b)

Figure I.9: In (a) the horizontal band of R not intersected by suppB3 and
suppB4 is highlighted. In (b), the colored subregion of R contains a point (x, y)
for the proof of the first item of Lemma I.7.5.

[x2
1, x

5
p1+2] × (y2

1 , ȳ) ⊂ R that cannot be intersected by suppB3 and
suppB4 (see the lower band in Figure I.9(a)). We want to prove that
suppB2 ∩ suppB5 6= ∅. If suppB2 ∩ suppB5 = ∅ then, defined ¯̄y :=
min{ȳ, y2

p2+2, y
5
p2+2}, there would exist a point (x, y) ∈ (x2

p1+2, x
5
1)× (y2

1 , ¯̄y)
where none of the four B-splines with supports at the corners of R would
be different from zero (see Figure I.9(b)). (x, y) would only be in the
support of B1. This is a contradiction. An analogous argument yields that
suppB3 ∩ suppB4 6= ∅.

2. By exchanging the axes, we can use the same argument adopted in the
previous item.

3. Assume the B-splines in the two couples B2, B4 and B3, B5 do not intersect.
Then, since the previous statements are proved, we must have

x3
p1+2 < x5

1

y2
p2+2 < y4

1

or


x2
p1+2 < x4

1

y5
p2+2 < y3

1 .

These two cases, depicted in Figure I.10(a)–(b), can be treated in the same
way, so we focus only on the first.
Consider a point (x, y) ∈ (x3

p1+2, x
5
1) × (y2

p2+2, y
4
1). Since x ∈ (x3

p1+2, x
5
1)

we have (x, y) /∈ suppB3, suppB5. While, since y ∈ (y2
p2+2, y

4
1), we have

(x, y) /∈ suppB2, suppB4. Therefore (x, y) is only in suppB1, which is a
contradiction. �

Figure I.11 shows possible arrangements of the supports of B1, B2, B3, B4, B5

to satisfy Proposition I.7.3 and Lemma I.7.5. In Figure I.11(a) the supports of
B3 and B5 intersect each other while the supports of B2 and B4 do not intersect.
In Figure I.11(b)–(c) both the pairs at opposing corners of R intersect each
other. In particular, in Figure I.11(c) B2 is as tall as B5, B3 is tall as B4, B2 is
as wide as B3 and B4 is as wide as B5.
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B2

B4

B3 B5

y2
p2+2

y4
1

x5
1

x3
p1+2

(x, y)

(a)

B2 B4

B3

B5

y3
1

y5
p2+2

x2
p1+2

x4
1

(x, y)

(b)

Figure I.10: (a) and (b) are the two possible arrangements of the supports of
B2, B3, B4, B5 inside the support of B1 when the first two items of Lemma I.7.5
hold but not the last.
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B4
B3

B5

(a)
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B2

B4B3
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Figure I.11: Arrangements of the four B-splines at corners of suppB1 satisfying
Lemma I.7.5.

The value of a bivariate B-splines B[xxx,yyy] at the lower and left edges of its
support can be different from zero if the multiplicity of the knots y1 and x1 in
yyy and xxx is p2 + 1 and p1 + 1 respectively. If one of B2, B3, B4, B5 is different
from zero on an edge of its support then some of the support intersections
described in Lemma I.7.5 can be just a part of an edge. In particular, this is
what happens when (p1, p2) = (0, 0). In this case, the intersections described in
Lemma I.7.5 1.–2. must be edge intersections in order for the nested B-splines
to have minimal support. However, these edge intersections will be aligned,
at least in one direction, i.e., there would exist at least one split traversing R
entirely, that is, B1 would not have minimal support, which is a contradiction.
We conclude that 5 MS B-splines are not enough for a linear dependence relation
if (p1, p2) = (0, 0).

In the rest of this section, for sake of simplicity and briefness, we do not
treat the cases with edge intersections. However, the arguments used to get our
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(a)

, ,

, ,
(b) (c)

Figure I.12: Consider the mesh on the region R depicted in (a). Every meshline
has multiplicity 1 and consider bidegree (2,2). In (b) we see the supports of the
MS B-splines on R. We will prove they are linearly dependent in Example I.7.17.
In (c) we see the relevant vertices in black and the non-relevant vertices in white.

results can be adapted for these cases by collapsing the regions we consider in
our proofs in splits of meshlines of higher multiplicities.

We now investigate more the B-spline support arrangements in the presence
of a linear dependence by looking at the T-vertices inside the region R.

Definition I.7.6. Let B[xxx,yyy] be a MS B-splines on a meshM. Then its knots
define a tensor meshM[xxx,yyy], as described in Section 4. We define themeshlines
of B[xxx,yyy] as the meshlines inM forming the tensor meshM[xxx,yyy] and the splits
of B[xxx,yyy] as the splits inM made of such meshlines.

Definition I.7.7. A vertex (x̄, ȳ) in R is called relevant if it corresponds to a
pair of knots in at least one MS B-spline in the linear dependence relation (see
Figure I.12). A meshline γ is called relevant if it is a meshline of a MS B-spline
in the linear dependence relation.

An example of relevant vertices and meshlines in a mesh is reported in Figure
I.12.

Lemma I.7.8. Any relevant vertex in R is the intersection of orthogonal relevant
meshlines.

Proof. Let (x̄, ȳ) be a relevant vertex in R. Then it corresponds to a pair of knots
of B[xxx,yyy] for some B-spline B involved in the linear dependence. In particular,
(x̄, ȳ) is in the orthogonal splits [xj1, x

j
p1+2]×{ȳ} and {x̄}× [yj1, y

j
p2+2]. Therefore

there must exist at least 2 orthogonal relevant meshlines contained in such splits
intersecting in (x̄, ȳ). �

Proposition I.7.9. Any relevant meshline is a meshline of at least two MS B-
splines in the linear dependence relation.

Proof. Let B = {B[xxxj , yyyj ]}nj=1 be the set of linearly dependent MS B-splines.
Let γ be any k-meshline of B[xxx1, yyy1]. Assume that γ is not a meshline of any
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γ
(x̄, ȳ)

Figure I.13: The T-vertex used in the proof of Corollary I.7.10.

other MS B-spline in B. We know that B[xxx1, yyy1] is Cpk−µ(γ)-continuous on γ.
The linear dependence relation in B,

α1B[xxx1, yyy1](x, y) +
n∑
j=2

αjB[xxxj , yyyj ](x, y) = 0 ∀ (x, y) ∈ R,

can be rewritten expressing B[xxx1, yyy1] in terms of the others

B[xxx1, yyy1](x, y) = − 1
α1
·
n∑
j=2

αjB[xxxj , yyyj ](x, y) ∀ (x, y) ∈ R (I.9)

because αj 6= 0 for every j = 1, . . . , n. Consider now (x, y) ∈ γ ⊂ R. Since
γ is not a meshline of any MS B-spline B[xxxj , yyyj ] in B with j ≥ 2, the right-
hand side is a C∞-continuous function on γ while the left-hand side is only
Cpk−µ(γ)-continuous on γ, which is a contradiction. �

Corollary I.7.10. Any relevant T-vertex corresponds to a pair of knots shared by
at least two MS B-splines in the linear dependence relation.

Proof. Let (x̄, ȳ) be a relevant T-vertex as in Figure I.13. The other three
possible cases of T-vertex can be treated similarly.

Since (x̄, ȳ) is relevant, γ must be relevant from Lemma I.7.8. By Proposition
I.7.9, γ is shared by at least two MS B-splines in the linear dependence relation,
B[xxx1, yyy1], B[xxx2, yyy2]. This means there are two knots y1

r ∈ yyy1 and y2
s ∈ yyy2

such that y1
r = ȳ = y2

s and [x1
1, x

1
p1+2] × {ȳ}, [x2

1, x
2
p1+2] × {ȳ} are splits in

the mesh containing γ. Since (x̄, ȳ) is a T-vertex, it ends such splits, that is,
(x1

1, y
1
r) = (x̄, ȳ) = (x2

1, y
2
s), i.e., (x̄, ȳ) is a pair of knots shared by B[xxx1, yyy1] and

B2[xxx2, yyy2]. �

In Section I.9 we will see that one can use the previous result to improve
the Peeling Algorithm [5, Algorithm 6.3], a tool to check if the LR B-splines
considered are linearly independent.

Definition I.7.11. Any T-vertex vvv in a box–partition is composed of two collinear
meshlines and another meshline γ orthogonal to them. We assign an orientation
to these vertices in the following way. We say that the T-vertex vvv is downward
if γ is below vvv, upward if γ is above vvv, rightward if γ is on the right of vvv and
leftward if γ is on the left of vvv.
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It might happen that a relevant vertex vvv in R̊ is a cross-vertex, i.e., the
intersection of four meshlines, but one meshline ending in vvv is not relevant. It
means that vvv behaves as a T-vertex for the B-splines in the linear dependence
relation. Therefore, we extend the definition of relevant T-vertex and of its
orientation also to these vertices in R̊.

Theorem I.7.12. Assume five MS B-splines are linearly dependent inside the
region R. Then there are at least 4 relevant T-vertices in R̊, one per orientation.

Proof. For the sake of simplicity and without loss of generality, we can assume
there are only relevant meshlines in R. Referring to any of the examples in
Figure I.11, let us consider the vertical splits of B2 and B5 in the interior of
the support of B1, i.e., in R̊. In order to find the minimal number of relevant
T-vertices in R̊, we assume that the parameter values of such vertical splits are
the same for B2 and B5. We assume the same for B3 and B4: the vertical splits
of B4 are included into the vertical splits of B3.

Suppose first that the multiplicities of the knots in the x-direction
corresponding to the vertical edges of R, i.e., xi1, for i = 1, 2, 3 and xip1+2
for i = 1, 4, 5, are equal to 1. Then, in R̊ there are p1 + 1 vertical splits of B5

and p1 + 1 for B3, counting the multiplicities. If an end vertex of a vertical
split of B3 or B5 corresponds to a relevant cross-vertex, it is contained in a split
traversing the entire region R, that is, it is contained in a vertical split of B1.
There are p1 vertical splits of B1 in R̊, counting the multiplicities. Therefore, at
most p1 vertical splits in R̊ of B3 and B5 can end with a relevant cross-vertex.
Thus there exists at least one relevant vertex of B5 left on the upper edge of
suppB5 inside R that cannot be a cross-vertex. The same holds for the relevant
vertices in B3. This proves the existence of two relevant T-vertices in R̊, one
downward and one upward. If the knots in the x-direction corresponding to the
vertical edges of R have higher multiplicities, one can apply the same argument,
by subtracting such multiplicities from the count of the vertical splits. Still
the difference between the vertical splits in B3, B5 and B1 will be greater than
or equal to one and there will be at least one vertical T-vertex per direction
necessarily. Applying the same argument to the horizontal splits of B3 and B5

we complete the proof. �

Theorem I.7.12 holds also if the number of B-splines involved in the linear
dependence relation is larger than 5 because of the necessary presence of nested
B-splines at the corners.

In order to carry out the proof of the next Proposition I.7.15, we need the
following definition.

Definition I.7.13. Given a spline mesh N = (M, µ,ppp), let γ be a (k, α)-split in
M for some k ∈ {1, 2}. For instance, assume k = 1. Let F : R2 → R be a spline
function in S(N ). F is a piecewise polynomial and therefore, for sufficiently small
ε > 0, the functions F+ = F|(α,α+ε)×R and F− = F|(α−ε,α)×R are polynomials
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in x (but splines in y), i.e.,

F+ =
p1∑
i=0

f+
i (y) · (x− α)i, F− =

p1∑
i=0

f−i (y) · (x− α)i

for f+
i , f

−
i univariate spline functions. Then we can extend the expression of

F+ and F− to R2. We define the jump function of F with respect to γ as
J(F )(x, y) = F+ − F−.

Remark I.7.14.

• If γ is not in a split traversing the support of F and is not on its boundary,
then F is C∞(γ) and in particular F+ = F− so that J(F )(x, y) = 0.

• When F is a bivariate B-spline, F = B[xxx,yyy] and γ corresponds to a knot
in xxx, that is xj = α for some j and γ = {xj} × [y1, yp2+2], then

J(B)(x, y) = J ′(B[xxx])(x) ·B[yyy](y)

where J ′(B[xxx])(x) is a polynomial of the form:

J ′(B[xxx])(x) =
p1∑

i=p1−µ(γ)+1

ai(x− α)i.

• Let c1, c2 be real numbers and F1, F2 be spline functions. Then J(c1F1 +
c2F2)(x, y) = c1J(F1)(x, y) + c2J(F2)(x, y).

Proposition I.7.15. We need at least 6 minimal support B-splines for a linear
dependence relation in R for any bidegree.

Proof. Referring to any configuration in Figure I.11, consider a relevant T-vertex
vvv in B5. By Corollary I.7.10, it has to be shared with at least another MS
B-spline. It cannot be shared with B2 if B2 is shorter than B5, and of course it
cannot be shared with B3 or B4 because it would not be a T-vertex. Then we
have two cases:

• There exists a new MS B-spline in the linear dependence relation with
support in the y-direction covering the space between the supports of B5

and B2 and having vvv as pair of knots, or

• B2 is as tall as B5.

In the first case we have finished the proof. Let us assume then that B2 is as tall
as B5. Applying the same procedure to the other relevant T-vertices, we either
have at least a new MS B-spline in the linear dependence relation, or it must be
that B4 is as tall as B3, B2 is as wide as B3 and B4 is as wide as B5. In the
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first case we have completed the proof. In the second, if no other B-splines are
involved, we can write B1 in terms of B2, B3, B4, B5:

B1(x, y) = α2B
2(x, y) +α3B

3(x, y) +α4B
4(x, y) +α5B

5(x, y) with αj 6= 0.
(I.10)

Now, consider any T-vertex downward, corresponding to a 1-split γ in B2 and
B5. The jump functions of B2 = B[xxx2, yyy2] and B5[xxx5, yyy5] corresponding to γ, in
order to represent B1 as in equation (I.10), must satisfy

α2J
′(B[xxx2])(x) ·B[yyy2](y) = −α5J

′(B[xxx5])(x) ·B[yyy5](y) (I.11)

because B1 is smooth on γ and there are no other MS B-splines in the linear
dependence relation with less regularity in the x-direction on γ. However, the
knots of yyy2 and yyy5 are different because of the presence of T-vertices leftward
and rightward, and equation (I.11) is impossible to achieve because B[yyy2] and
B[yyy5] are defined on different knots and cannot be proportional everywhere. �

Proposition I.7.16. In a linear dependence relation with six MS B-splines on an
LR-mesh, the sixth MS B-spline, B6, is not an LR B-spline.

Proof. If B6 is an LR B-spline it has been obtained through knot insertion
from an LR B-spline in a coarser mesh. When the knot insertion is applied the
size of the refined B-splines is smaller only in the direction where the knot has
been inserted. Therefore, for B6, in order to be an LR B-spline and be in the
linear dependence relation there would exist another B-spline among B2, B3, B4

and B5 whose support is either as tall or as wide as the support of B6 and
intersects with the support of B6. Assume we are in the first case of the proof of
Proposition I.7.15 and there are exactly six MS B-splines in linear dependence.
Then there are 4 relevant T-vertices in R̊ shared with B6 and identifying the
edges of suppB6. Therefore, suppB6 ⊆ R̊ and cannot be the same as the size
of any of B2, B3, B4, B5 in any direction.

In the second case of the proof of Proposition I.7.15, if B6 is an LR B-spline,
we can assume that B6 is as tall as B2 and B5 (the other cases can be treated
similarly). Then there would exist a vertical split of B6 that traverses the
support of B2, or B5, without being a split of it. This is impossible for the
minimality of their supports. �

Example I.7.17. In this example we prove that 6 MS B-splines are enough for a
linear dependence relation for any bidegree ppp = (p1, p2). We start with ppp =(2,2).
Consider the LR-mesh M of multiplicity one depicted in Figure I.4(a). The
supports of the 10 MS B-splines defined on it are represented in Figure I.4(b)–(c).
By using the dimension increasing formula in Theorem I.3.9, since

• the dimension of the underlying tensor mesh is 3,

• by inserting first the horizontal splits, the expanded spline knot vectors on
them have length 4, which results in a dimension increase of 1 per insertion,
and
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Figure I.14: The supports of the six MS B-splines of degree (2,2) in linear a
dependence relation on the LR-mesh depicted in Figure I.4(a).

• then, by inserting the two vertical splits, the dimension increases by 2 each
time,

we easily compute the dimension of the spline space on N = (M, 1, (2, 2)),

dim S(N ) = 3 + 1 + 1 + 2 + 2 = 9.

Moreover, the construction of N went LR-wise, and so MS-wise, hand-in-hand.
Therefore, we can conclude that there is a linear dependence relation in BMS(N ).
The necessary conditions to be in linear dependence, given in this section, are
satisfied by the six MS B-splines whose support is depicted in Figure I.14. Finally,
we notice that the 9 LR B-splines on M, reported in Figure I.4(b), are still
linearly independent and span the spline space on N .

For any other bidegree (p1, p2) 6=(0,0), one can build an LR-mesh preserving
the same structure of Figure I.4(a). Figure I.15(a)-(j) shows the cases for
(p1, p2) =(3,3),(4,4),(1,1),(1,0), (3,1). The insertions are the same as for bidegree
(2,2) if pk ≥ 2 for some k ∈ {1, 2}, while if (p1, p2) =(1,0), (0,1), (1,1), then it
is necessary to use some extensions to get an equivalent arrangement (see the
dashed meshlines in the mesh (e) and (g) of Figure I.15). Again the dimension of
the spline space is 9 while there are 10 MS B-splines in all the cases. Figure I.15
(k)-(l) shows an equivalent arrangement for bidegree (0,0). However, the mesh
in (k) is not an LR-mesh. As we already pointed out, it is not possible to satisfy
the necessary nestedness condition for a linear dependence when considering
LR-meshes. However, it can be verified on general meshes. For this example,
dim S(N ) = 5 and it is spanned by the characteristic functions of the elements
of the box-partition. Therefore, the MS B-splines on the mesh span the spline
space but are more than its dimension.

I.8 Minimal number of LR B-splines for a linear
dependence relation

In this section we show that at least eight B-splines must be involved for a linear
dependence relation in BLR(N ). Then we provide examples for any bidegree
ppp = (p1, p2) with pk ≥ 2 for some k ∈ {1, 2} where the LR B-splines in linear
dependence are exactly eight. In such examples the meshes will be refinements
of the meshes presented in Example I.7.17. As we pointed out in Proposition
I.7.16, the sixth MS B-spline B6 in Example I.7.17 is not an LR B-spline on the
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Figure I.15: In (a) an LR-mesh providing MS B-splines of bidegree (3,3) in an
equivalent arrangement of the MS B-splines of bidegree (2,2) on the mesh in
Figure I.4(a). In (b) are shown the supports of the six B-splines in the linear
dependence relation. In (c)-(d) the same for bidegree (4,4). In (e)-(f) we have
the same for bidegree (1,1). Note that we have used two extensions (dashed
meshlines) to obtain an equivalent arrangement as for the other bidegrees. In
(g)-(h) and (i)-(j) we show the equivalent configuration for bidegrees (1,0) and
(3,1). Finally, in (k)-(l) we have a comparable arrangement for bidegree (0,0).
However, the mesh in (k) is not an LR-mesh.
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meshM. In these new examples we show how to refineM in order to refine
B6 into two B-splines that can be now obtained through the knot insertion
algorithm from LR B-splines on coarser meshes. This will move the number of
MS B-splines involved in the linear dependence from six to eight but all of them
will now be LR B-splines.

Lemma I.8.1. Given a spline LR-mesh N = (M, µ,ppp), assume the elements
in BLR(N ) are linearly independent. If the insertion of a k-split γ causes
a linear dependence relation in BLR(N + γ), then the expanded spline knot
vector on γ, τττ µ̃3−k

p3−k , has length at least p3−k + 3 and the growth of cardinality is
|BLR(N + γ)| − |BLR(N )| > 2.

Proof. Theorem 5.2 of [5] ensures that if τττ µ̃3−k
p3−k has length p3−k + 2 then the

elements in BLR(N +γ) are linearly independent. Assume that τττ µ̃3−k
p3−k has length

p3−k + 3. From the end of Section I.6, the refinement goes hand-in-hand only
if |BLR(N + γ)| − |BLR(N )| ≥ 2 and there is a linear dependence relation if it
is a strict inequality. If the refinement does not go hand-in-hand then it must
be |BLR(N + γ)| − |BLR(N )| ≤ 1 and the new B-spline (if existing) is linearly
independent of the B-splines in BLR(N ) as it has a split that intersects γ, which
either is not inM or it has an higher multiplicity inM+ γ. �

Proposition I.8.2. Given a spline LR-mesh N = (M, µ,ppp), we need at least 8
LR B-splines for a linear dependence relation in BLR(N ).

Proof. By Proposition I.7.3, we must have four nested B-splines at the four
corners of R. In order to keep the number of B-splines needed as low as possible
we assume as in the proof of Corollary I.7.4 that we only need, for the nestedness
condition, five B-splines: B2, B3, B4, B5 contained in B1. By Theorem I.7.12,
this implies that there are at least 4 relevant T-vertices. Either

1. the nested B-splines share all these relevant T-vertices between them, or

2. a relevant T-vertex is not shared.

In case 1, we have a configuration as the one reported in Figure I.11(c) and as
we have seen in the proof of Proposition I.7.16, if there are no more relevant
meshlines apart from those of B2, B3, B4, B5, the other MS B-splines that can
be generated in R using relevant meshlines are not LR B-splines. Therefore,
in order to make a linear dependence relation in R, there must exist at least
another split that has provided, by Lemma I.8.1, a growth in the LR B-spline set
of at least three, bringing the number of LR B-splines involved to at least eight.
Note that such a split necessarily has refined some of the LR B-splines at the
four corners and the LR B-splines generated must all have nonzero coefficients
in the linear dependence relation because created via knot insertion from them.

In case 2, there are T-vertices not shared by two B-splines nested at the
corners. There must exist other LR B-splines sharing these T-vertices and
bringing linear dependence. Hence, there must exist at least another split, aside
from those needed for the construction of the nested LR B-splines, that has
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Figure I.16: (a) an LR-mesh of multiplicity 1, (b) the LR B-splines of degree
(2,2) on it, (c) the LR B-splines in the linear dependence relation.

provided, by Lemma I.8.1, a growth of at least three in the LR B-spline set,
moving the total number to at least eight. Also in this case, we note that all of
these three LR B-splines must have nonzero coefficient in the linear dependence
relation for the following reason. One of the three B-spline, B, has necessarily a
nonzero coefficient because it is used to share a relevant T-vertices. The other
two B-splines have been created together with B and are related to it through
knot insertion relations. Therefore they also must have nonzero coefficients in
the linear dependence relation. �

In the following example we show meshes where there are exactly eight LR
B-splines in a linear dependence relation for any bidegree ppp = (p1, p2) with
pk ≥ 2 for some k ∈ {1, 2}. Such meshes are refinements of the meshes presented
in Example I.7.17.

Example I.8.3. Consider the spline mesh N = (M, 1, (2, 2)) withM as in Figure
I.4(a). We have shown in Example I.7.17 that dim S(N ) = 9 and the construction
of M went LR-wise hand-in-hand. Let us now insert a new split γ, whose
expanded spline knot vector has length p2+3 = 5, to get the meshM+γ as shown
in Figure I.16(a). Then, by Theorem I.3.9, dim S(N + γ) = dim S(N ) + 2 = 11
and N + γ went LR-wise hand-in-hand with N . Furthermore, the LR B-spline
set grows by three, |BLR(N + γ)| = |BLR(N )| + 3 = 12 as shown in Figure
I.16(b). Therefore, there is a linear dependence relation. The only eight LR
B-splines satisfying Proposition I.7.3 and Corollary I.7.10 are depicted in Figure
I.16(c).

For what concerns the general bidegree (p1, p2), if pk ≥ 2 for some k ∈ {1, 2} it
is always possible to arrange the LR B-splines in the same way as for bidegree (2,2).
For instance, in Figure I.17 are reported the cases for (p1, p2) =(3,3), (4,4), (3,1),
(2,0). Also here dim S(N ) = 11 while |BLR(N )| = 12. For (p1, p2) =(0,1),(1,0)
and (1,1) we are unable to find an LR B-spline refinement process so that one
can insert, via knot insertion, an LR B-spline inside R̊, to share the relevant
T-vertices of the four nested B-splines, without traversing the larger B-spline
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Figure I.17: In (a) is shown an LR-mesh providing LR B-splines of degree (3,3)
in an equivalent arrangement of the LR B-splines of bidegree (2,2) on the mesh
in Figure I.16 (a). In (b) are shown the supports of the eight B-splines in the
linear dependence relation. In (c)-(d) are shown the same for bidegree (4,4), in
(e)-(f) for bidegree (3,1) and (g)-(h) for bidegree (2,0).
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B1 with an extra split. This split destroys the linear dependence relation by
triggering a refinement of B1. We conjecture that it is impossible to have a
linear dependence relation in BLR(N ) for such low bidegrees.

We stress thatM+ γ in Figure I.16(a) is obtained by refining the meshM
in Figure I.4(a) considered in Example I.7.17. What happens is that with the
insertion of a new split, the MS B-spline in the center of meshM, B6, is refined
into two MS B-splines that can now be obtained through the knot insertion
procedure.

I.9 Improvement of the Peeling Algorithm

The Peeling Algorithm introduced in [5] is a tool to check if the LR B-splines on
a given LR-mesh are linearly independent. However it does not handle every
possible configuration, that is, it might end without answering whether the LR
B-splines’ collection is linearly independent or not. In this section, we briefly
recall it and we show how it can be improved, by using Corollary I.7.10, to sort
out more cases.

Definition I.9.1. An element of the box-partition E is overloaded if it is in
the support of more B-splines than necessary for spanning the corresponding
polynomial space Πppp, that is, it is in more than (p1 + 1)(p2 + 1) supports. We
call a B-spline overloaded if all the elements in its support are overloaded.

An extra B-spline, in a linear dependence, can be removed without changing
spanning properties over the elements of E in its support. So, only overloaded
B-splines occur in linear dependencies. A linear dependence relation has to
involve at least two overloaded B-splines on every element. Therefore, if on
an element there is the support of only one overloaded B-spline, such B-spline
cannot be active in a linear dependence. This simple observation is the basis of
the Peeling Algorithm (Algorithm I.1). The implementation of it is described in
[5] in terms of matrices.

However, it might happen that every element of EO is shared but yet the
overloaded LR B-splines are linearly independent. An example is reported in
Figure I.18. We consider bidegree (2,2) and an LR-mesh of multiplicity one.
In the highlighted region in Figure I.18(a) there are the supports of five LR
B-splines, reported in Figure I.18(b), that form the collection BO of the algorithm.
Then, for each element of the box-partition in such region we count how many of
these supports are on it. If an element is only in one support, the corresponding
B-spline is placed in the subcollection BO1 of the algorithm. From Figure I.18(c),
we see that BO1 = ∅. Therefore, the algorithm stops without answering whether
the LR B-splines on the mesh are linearly independent or not. However, if we
now look at the T-vertices in the region, highlighted in Figure I.18(c), we see that
none of them is shared, as pair of knots, in two or more B-splines of BO. Since
the necessary condition for linear dependency Corollary I.7.10 is not satisfied,
we can conclude that the LR B-splines on the mesh are linearly independent.
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Algorithm I.1: Peeling Algorithm
1 From the set of LR splines BLR(N ) create the set BO of overloaded LR

B-splines;
2 Let EO be the elements of E in the supports of the LR B-splines in BO;
3 Initialization of a subset BO1 of BO we are going to define, BO1 = ∅;
4 for every element β in EO do
5 if only one LR B-spline B of BO has β in its support then
6 BO1 = BO1 ∪ {B}

7 if BO\BO1 = ∅ then
8 linear independence.
9 else

10 if BO1 = ∅ then
11 break, but might have linear dependence.
12 BO = BO\BO1 ;
13 Go to 2;

(a)

, ,

,
(b)

2 2

2 2

3
3 4

3
3 3

3 4 5 4 3

3 3 4 3
3 3

(c)

Figure I.18: Consider bidegree (2,2). In the highlighted region in (a) there are
the supports of five overloaded LR B-splines, depicted in (b). The numbers in
the elements of the region, reported in (c), indicate how many supports of these
B-splines are on them. The highlighted vertices are the T-vertices corresponding
to pair of knots of the overloaded LR B-splines.

The Peeling Algorithm can therefore be improved by inserting in BO1 also the
B-splines of BO that have an exclusive T-vertex as pair of knots. Furthermore,
if the cardinality of BO becomes less than 8 at any iteration of the algorithm,
we can conclude that the LR B-spline collection is linearly independent thanks
to Proposition I.16.

I.10 Conclusions, conjectures and future work

In this work we have identified necessary features of the mesh to have a linear
dependence relation in the MS and LR B-spline sets for any bidegree ppp. Namely,
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if the union of the supports of the B-splines involved in the linear dependence
relation is denoted as R,

• there are nested B-splines at the corners of R, and

• every relevant T-vertex is shared.

Moreover, we have proved that the minimal number of MS B-splines needed for
a linear dependence relation is six while for the LR B-splines is eight. These
numbers are sharp for any bidegree ppp = (p1, p2) for the MS B-splines and for
the LR B-splines with pk ≥ 2 for some k ∈ {1, 2}. When (p1, p2) =(0,1), (1,0) or
(1,1), we conjecture it is not possible to have a linear dependence relation in the
LR B-spline set.

In our future work, we would like to classify the meshes with a linear
dependence relation involving this minimal number of MS B-splines. The number
of possible cases would then be dependent on the bidegree chosen. Our conjecture
is that every possible configuration of linear dependency is a refinement of one
of such cases. Note that this is what happens in the meshes of Example I.8.3.
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Abstract

In this paper we describe an adaptive refinement strategy for LR B-splines.
The presented strategy ensures, at each level, local linear independence of
the obtained set of LR B-splines. This property is then exploited in two
applications: the construction of efficient quasi-interpolation schemes and
the numerical solution of elliptic problems using the isogeometric Galerkin
method.

II.1 Introduction

Since the ’70s, curves and surfaces in engineering are usually expressed by means
of computer aided design (CAD) technologies, such as B-splines and non-uniform
rational B-splines (NURBS). Thanks to properties like nonnegativity, local
support and partition of unity, they allow for an easy control and modification
of the geometries they describe, and this motivates their undisputed success as
main modeling tools for objects with complex shapes in engineering; see, e.g.,
[6, 18, 21] and references therein. On the other hand, B-splines also provide a
very efficient representation of smooth piecewise polynomial spaces, and so are a
popular ingredient in the construction of approximation schemes; see, e.g., [8,
17, 22] and references therein.

More recently, the advent of isogeometric analysis (IgA) has integrated spline
and CAD technologies into finite element analysis (FEA); see, e.g., [1, 7]. IgA
aims to unify the geometric description of the domain of the differential problem
with its numerical resolution, in order to expedite the simulation process and
gaining in accuracy. In addition to the properties listed above, B-splines and
NURBS feature other qualities appreciated in this context, such as (local) linear
independence and high global smoothness.
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Tensor structures admit a simple but powerful multivariate extension of
univariate splines and B-splines. On the other hand, they lack adequate local
refinement. The constantly increasing demand for higher precision in simulations
and reverse engineering processes requires the possibility to apply adaptive
local refinement strategies, in order to reduce the approximation error while
keeping the computational costs low. This request for adaptivity, triggered the
interest in new formulations of B-splines and NURBS, still based on local tensor
structures [4, 9–13, 23]. All these new classes of functions are defined on locally
refined meshes, in which T-vertices in the interior of the domain are allowed, the
so-called T-meshes.

Locally refined B-splines, or in short LR B-splines [10], are one of these new
formulations, and their definition is inspired by the knot insertion refinement
process of tensor B-splines. These latter are defined on global knot vectors, one
per direction. The insertion of a new knot in a knot vector corresponds to a line
segment in the mesh crossing the entire domain. This refines all the B-splines
whose supports are crossed. Instead, LR B-splines are defined on local knot
vectors and the insertion of a new knot is always performed with respect to a
particular LR B-spline. As a consequence, the LR B-spline definition is consistent
with the tensor B-spline definition when the underlying mesh at the end of the
process is a tensor mesh, and the formulation of LR B-splines remains broadly
similar to classical tensor B-splines even though they allow local refinements.
This makes them one of the most elegant extensions of univariate B-splines on
local tensor structures.

LR B-splines possess almost all the properties of classical tensor B-splines.
Unfortunately, they are not always linearly independent. To this day, it is
not yet known what are the precise conditions on the locally refined mesh to
ensure a linearly independent set of LR B-splines, but some progress has been
made in this direction. In [10] an efficient algorithm to seek and destroy linear
dependence relations has been introduced, but it does not handle every possible
locally refined mesh. In [20] a first analysis on the necessary conditions for
encountering a linear dependence relation has been presented. There, it has
also been proved that, for any bidegree, a linear dependence relation in the LR
B-spline set involves at least 8 functions. In [3] a characterization of the local
linear independence of LR B-splines has been provided. Such a strong property is
guaranteed only on locally refined meshes with strong constraints on the lengths
and positions of the line segments that yield particular arrangements of the LR
B-spline supports. On the other hand, a practical adaptive refinement strategy
to produce meshes with the local linear independence property is still missing
in the literature. To the best of our knowledge, the only mesh construction
that leads to a locally linearly independent set of LR B-splines can be found in
[3]. Such a construction, however, cannot be considered as a practical strategy
because the regions to be refined and the maximal resolution, i.e., the sizes of
the smallest cells in the domain induced by the mesh, must be chosen a priori.

In this paper, we describe a practical refinement strategy ensuring the local
linear independence of the corresponding LR B-splines. Such a property is
appealing as it admits, e.g., the construction of efficient quasi-interpolation
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schemes and the unisolvency of linear systems obtained by isogeometric
discretization of differential problems based on such LR-splines. The remainder
of the paper is divided into 5 sections. Section II.2 contains the definition of
LR B-splines and a summary of their main properties, whereas Section II.3
describes the mesh refinement strategy and is the core of the paper. Sections II.4
and II.5 present applications of the refinement strategy in the context of quasi-
interpolation and isogeometric Galerkin discretizations of elliptic problems. We
end in Section II.6 with some concluding remarks.

Throughout the paper, we assume the reader to be familiar with the definition
and main properties of (univariate) B-splines, in particular with the knot insertion
procedure. An introduction to this topic can be found, e.g., in the review papers
[17, 18] or in the classical books [8] and [22].

II.2 Locally refined B-splines

In this section, we introduce locally refined B-splines, or in short LR B-splines,
and discuss several of their properties, following the terminology from [20]. We
denote by Πp the space of univariate polynomials of degree less than or equal
to p, and by Πppp the space of bivariate polynomials of degrees less than or
equal to ppp = (p1, p2) component-wise. Furthermore, we denote by B[xxx,yyy] the
bivariate B-spline defined on the (local) knot vectors xxx = (x1, . . . , xp1+2) and
yyy = (y1, . . . , yp2+2). The bidegree of B[xxx,yyy] is ppp = (p1, p2) and is implicitly
expressed by the length of xxx and yyy.

In order to define LR B-splines, we first introduce the concept of box-partition.

Definition II.2.1. Given an axis-aligned rectangle Ω ⊆ R2, a box-partition of
Ω is a finite collection E of axis-aligned rectangles in Ω such that:

1. β̊1 ∩ β̊2 = ∅ for any β1, β2 ∈ E , with β1 6= β2.

2.
⋃
β∈E β = Ω.

Given a box-partition E , we define the vertices of E as the vertices of its
elements. In particular, a vertex of E is called T-vertex if it is the intersection
of three element edges. A meshline is an axis-aligned segment contained in an
edge of an element of E , connecting two and only two vertices of E located at
its end-points. The collection of all the meshlines of the box-partition is called
mesh, and denoted byM.

A meshline can be expressed as the Cartesian product of a point in R and
a finite interval. Let α ∈ R be the value of such a point and let k ∈ {1, 2} be
its position in the Cartesian product. If k = 1 the meshline is vertical and if
k = 2 the meshline is horizontal. We sometimes write k-meshline to specify
the direction of the meshline, and (k, α)-meshline to specify exactly on which
axis-parallel line in R2 the meshline lies.

For defining splines of a certain bidegree ppp = (p1, p2) and smoothness across
the meshlines, we also need the notion of multiplicity of a meshline. This
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Figure II.1: Example of a box-partition E of a rectangle Ω in (a), and the mesh
corresponding to E in (b). The meshlines are identified by squares showing the
associated multiplicities.

is a positive integer associated with every meshline in M. For a k-meshline
this number is assumed to be maximally pk + 1. A meshline in M has full
multiplicity if its multiplicity is maximal, and we say thatM is open if every
boundary meshline has full multiplicity. If all the meshlines of the box-partition
have the same multiplicity m we say that M has multiplicity m. When the
T-vertices of E occur only on ∂Ω and all collinear meshlines have the same
multiplicity, the corresponding mesh is called tensor mesh. Figure II.1 shows
an example of a box-partition and its associated mesh.

Given a bivariate B-spline B[xxx,yyy], let xi1 , . . . , xir and yj1 , . . . , yjs be the
distinct knots in xxx and yyy, respectively. The mesh

M(xxx,yyy) := {{xi`} × [yjn , yjn+1 ] : ` = 1, . . . , r; n = 1, . . . , s− 1}
∪ {[xin , xin+1 ]× {yj`} : ` = 1, . . . , s; n = 1, . . . , r − 1}

(II.1)

is a tensor mesh in suppB[xxx,yyy]. The multiplicities of the meshlines inM(xxx,yyy)
are given by the multiplicities of the knots of B[xxx,yyy]. For instance, the (1,xi`)-
meshlines {xi`} × [yjn , yjn+1 ] for n = 1, . . . , s− 1 have all the same multiplicity
equal to the multiplicity of xi` in xxx.

Definition II.2.2. Given a meshM and a B-spline B[xxx,yyy], we say that B[xxx,yyy]
has support onM if:

• the meshlines in M(xxx,yyy) can be obtained as unions of meshlines in M,
and

• their multiplicities are less than or equal to the multiplicities of the
corresponding meshlines inM.

Furthermore, we say that B[xxx,yyy] has minimal support onM if:

• it has support onM,
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(a) (b) (c) (d)

Figure II.2: Support of B-splines of bidegree (2, 2) on a meshM of multiplicity 1.
The mesh is shown in (a). The B-splines whose supports are depicted in (b) and
(c) have minimal support onM. The tensor meshes defined by the B-spline’s
knots are highlighted with thicker lines. On the other hand, the B-spline in (d)
does not have minimal support onM: the collection of meshlines contained in
the dashed line disconnects its support.

• the multiplicities of the interior meshlines in M(xxx,yyy) are equal to the
multiplicities of the corresponding meshlines inM, and

• there is no collection γ of collinear meshlines in M\M(xxx,yyy) such that
suppB[xxx,yyy]\γ is not connected.

Figure II.2 shows examples of B-splines of bidegree (2, 2) with support on
a mesh of multiplicity 1. In particular, the B-splines in (b)–(c) have minimal
support, whereas the support of the B-spline in (d) can be disconnected by the
collection of meshlines γ, visualized by dashed lines in the figure.

Given a mesh M and a B-spline B[xxx,yyy] with support in M, assume that
it does not have minimal support on M. Then, there exists a collection of
(k, α)-meshlines γ such that suppB[xxx,yyy]\γ is not connected and either γ is in
M\M(xxx,yyy) or γ ⊆ M(xxx,yyy), i.e., α is an internal knot of xxx for k = 1 or yyy for
k = 2, but its meshlines have lower multiplicities inM(xxx,yyy) than inM. Assume
that the meshlines in γ have all the same multiplicity m in M. Denoting by
µ(α) ≥ 0 the number of times α appears in the knot vector of B[xxx,yyy] in the
k-th direction, then m − µ(α) is strictly positive as B[xxx,yyy] has support, but
not minimal support, on M. One could consider such α as an extra knot, of
multiplicity m − µ(α), with respect to the knot vector of B[xxx,yyy] in the k-th
direction (in xxx if k = 1 and in yyy if k = 2), and perform knot insertion on B[xxx,yyy].
If α was already a knot of B[xxx,yyy], so µ(α) ≥ 1, this means rising its multiplicity
by m − µ(α). The resulting generated B-splines will still have support onM
and eventually they will also have minimal support onM. As an example, the
collection γ highlighted with dashed lines in Figure II.2(d) is made of (2, α)-
meshlines, for some α, of multiplicity 1. Such α can be inserted as new knot of
multiplicity 1 in the knot vector in the y-direction of the considered B-spline to
refine it in two B-splines via knot insertion.

The LR B-splines are generated by means of the above procedure. We start
by considering a coarse tensor mesh and we refine it by inserting collections of
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collinear meshlines, one at time, of the same multiplicity. On the initial mesh we
consider the standard tensor B-splines and whenever a B-spline in our collection
has no longer minimal support during the mesh refinement process, we refine it
by using the knot insertion procedure. The LR B-splines will be the final set of
B-splines produced by this algorithm. In the next definitions we formalize this
by describing the mesh refinement process in our framework.

Definition II.2.3. Given a box-partition E and an axis-aligned segment γ, we
say that γ traverses β ∈ E if γ ⊆ β and the interior of β is divided into two
parts by γ, i.e., β\γ is not connected. A split is a finite union of contiguous and
collinear axis-aligned segments γ = ∪iγi such that every γi either is a meshline
of the box-partition or traverses some β ∈ E . A meshM has constant splits if
each split in it is made of meshlines of the same multiplicity.

The LR B-splines are defined on a class of meshes with constant splits, called
LR-meshes. Thus, from now on, we restrict our attention to meshes that have
constant splits.

When a split γ is inserted in a box-partition E , any traversed β ∈ E is
replaced by the two subrectangles β1, β2 given by the closures of the connected
components of β\γ. The resulting new box-partition will be denoted by E + γ
and its corresponding mesh byM+ γ. We also assume that a positive integer
µγ has been assigned to any split γ. The multiplicities of the meshlines in
M∩ (M + γ) and not contained in γ are unchanged. Then, if γ is made of
new meshlines with respect toM, we assign a multiplicity equal to µγ to them,
whereas if γ is made of meshlines that were already contained inM, we increase
their multiplicity by µγ .

Definition II.2.4. Given a meshM with constant splits, a B-spline B[xxx,yyy] with
support onM and a split γ, we say that γ traverses B[xxx,yyy] if the interior of
suppB[xxx,yyy] is divided into two parts by γ, i.e., suppB[xxx,yyy]\γ is not connected
and either γ is inM\M(xxx,yyy) or γ ⊆M(xxx,yyy) but the multiplicity of its meshlines
is lower inM(xxx,yyy) than inM.

We are now ready to define the mesh refinement process and the LR B-splines.
The meshes produced by this procedure will be called LR-meshes.

Definition II.2.5. Given a bidegree ppp = (p1, p2), letM1 be a tensor mesh such
that the set of standard tensor B-splines of bidegree ppp on M1 is nonempty,
and denote it by B1. We then define a sequence of meshes M2,M3, . . . and
corresponding function sets B2,B3, . . . as follows. For i = 1, 2, . . ., let γi be a
split such thatMi+1 :=Mi+γi has constant splits and such that the support of
at least one B-spline in Bi is traversed by a split inMi+1. On this refined mesh
Mi+1, the new set of B-splines Bi+1 is constructed by the following algorithm:

1. Initialize the set by Bi+1 ← Bi.

2. As long as there exists B[xxxj , yyyj ] ∈ Bi+1 with no minimal support onMi+1:
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(a) (b)

Figure II.3: Two meshes. Assume that the boundary has a multiplicity large
enough so that it is possible to define a B-spline of bidegree ppp on it. Then, the
mesh in (a) is not an LR-mesh because it cannot be built as a sequence of split
insertions. The mesh in (b) is an LR-mesh similar to the one in (a).

a) Apply knot insertion: ∃B[xxxj1, yyy
j
1], B[xxxj2, yyy

j
2] : B[xxxj , yyyj ] = α1B[xxxj1, yyy

j
1] +

α2B[xxxj2, yyy
j
2].

b) Update the set: Bi+1 ← (Bi+1\{B[xxxj , yyyj ]}) ∪ {B[xxxj1, yyy
j
1], B[xxxj2, yyy

j
2]}.

The mesh produced at each step is called LR-mesh and the corresponding
function set is called LR B-spline set.

Obviously not every mesh is an LR-mesh. One could consider meshes that
do not have constant splits or meshes that cannot be built through a sequence
of split insertions as the mesh depicted in Figure II.3(a). In general, the mesh
refinement process producing a given LR-meshM =MN is not unique. Indeed,
the split insertion ordering can often be changed. Nevertheless, the LR B-spline
set onM is well defined because it is independent of such insertion ordering, as
proved in [10, Theorem 3.4].

Given an LR-mesh, the corresponding LR B-splines have several desirable
properties for applications. By their definition, it is clear that

• they are nonnegative,

• they have minimal support, and

• they can be expressed by the LR B-splines on finer LR-meshes using
nonnegative coefficients (provided by the knot insertion procedure).

Furthermore, it is possible to scale them by means of positive weights so that
they also form a partition of unity; see [10, Section 7].

Unfortunately, they are not always linearly independent. Figure II.4 shows an
example of linear dependence among the LR B-splines of bidegree (2, 2) defined
on an LR-mesh of multiplicity 1. To this day, it is not yet known what are the
precise conditions on the LR-mesh to ensure a linearly independent set of LR
B-splines.

In [3] a characterization of the local linear independence of LR B-splines
has been provided. Such a strong property is guaranteed only on LR-meshes
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Figure II.4: Example of linear dependence in the LR B-spline set. The
parameterization of an LR-meshM of multiplicity 1 is considered in (a), and
the linear dependence relation among some of the LR B-splines of bidegree (2, 2)
defined onM is illustrated in (b). The LR B-splines are represented by means
of their supports on the mesh and the tensor meshes induced by their knots are
highlighted with thicker meshlines.

with strong constraints on the split lengths and positions that yield particular
arrangements of the LR B-spline supports. This last statement is formalized in
the following.

Definition II.2.6. Given a meshM, let B[xxx1, yyy1], B[xxx2, yyy2] be two different LR
B-splines defined onM. We say that B[xxx2, yyy2] is nested in B[xxx1, yyy1], and we
write B[xxx2, yyy2] � B[xxx1, yyy1], if:

• suppB[xxx2, yyy2] ⊆ suppB[xxx1, yyy1], and

• any meshline γ ofM in ∂suppB[xxx1, yyy1] ∩ ∂suppB[xxx2, yyy2] has a higher (or
equal) multiplicity when considered inM(xxx1, yyy1) than inM(xxx2, yyy2).

An open mesh where no LR B-spline is nested is said to have the non-nested
support property, or in short the N2S property.

The definition of nested LR B-splines was formulated for the first time
in [2]. Definition II.2.6 is different but equivalent to it. Figure II.5 shows
an example of an LR B-spline nested into another. Note that for meshes of
constant multiplicity, e.g., of multiplicity 1, B[xxx2, yyy2] � B[xxx1, yyy1] if and only if
suppB[xxx2, yyy2] ⊆ suppB[xxx1, yyy1].

The next result, presented in [3], relates the local linear independence of the
LR B-splines to the N2S property of the mesh.
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(a) (b) (c) (d)

Figure II.5: Example of nested LR B-splines on the meshM shown in (a). All
the meshlines have multiplicity 1 except those in the left edge ofM, highlighted
with a double line, which have multiplicity 2. In (b)–(d) three LR B-splines,
B[xxx1, yyy1], B[xxx2, yyy2], B[xxx3, yyy3] respectively, of bidegree (2, 2) with minimal support
onM are represented by means of their supports and the tensor meshes induced
by their knots. All the knots of these LR B-splines have multiplicity 1 except
x3

1 which has multiplicity 2. Therefore, B[xxx2, yyy2] � B[xxx1, yyy1] but B[xxx3, yyy3] �
B[xxx2, yyy2] and B[xxx3, yyy3] � B[xxx1, yyy1], despite that suppB[xxx3, yyy3] ⊆ suppB[xxx2, yyy2]
and suppB[xxx3, yyy3] ⊆ suppB[xxx1, yyy1], because the shared meshlines in the left
edge of suppB[xxx3, yyy3], suppB[xxx2, yyy2] and suppB[xxx1, yyy1] have multiplicity 2 in
M(xxx3, yyy3) and multiplicity 1 inM(xxx2, yyy2) andM(xxx1, yyy1).

Theorem II.2.7. Given a bidegree ppp = (p1, p2), let M be an open LR-mesh
corresponding to a box-partition E and let BLR(M) be the set of LR B-splines
of bidegree ppp onM. The following statements are equivalent:

1. The elements of BLR(M) are locally linearly independent.

2. M has the N2S property.

3. For any element β ∈ E, the number of nonzero LR B-splines over β satisfies

#{B ∈ BLR(M) : suppB ⊇ β̊} = (p1 + 1)(p2 + 1).

4. The LR B-splines form a partition of unity, without the use of scaling
weights.

An element of E for which statement 3 holds is said to be non-overloaded.
Note that (p1 + 1)(p2 + 1) is the dimension of the polynomial space over the
element.

In [3] one can also find an algorithm to construct LR-meshes so that the
N2S property is fulfilled. This approach, however, has a relevant drawback for
practical purposes: the regions to be refined and the maximal resolution have
to be chosen a priori. Moreover, the algorithm cannot be stopped prematurely,
before having inserted all the splits determined initially. In practice, one rarely
knows in advance where the error will be large and how fine the mesh has to be
chosen to reduce it under a certain tolerance.

In the next section, we present an alternative way to generate LR-meshes so
that the N2S property is guaranteed.
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II.3 N2S structured mesh refinement strategy

In this section, we define a local refinement strategy that ensures the N2S
property for the obtained meshes. It consists of two steps. First, we apply the
so-called structured mesh refinement, defined in [15], to the LR B-splines whose
contribution to the approximation error is larger than a given tolerance. Then,
we slightly modify the obtained mesh by prolonging some splits, to recover the
N2S property. The meshes produced by this refinement are open meshes with
internal meshlines of multiplicity one.

As opposed to the classical finite element method, in which the refinement
is applied to the box-partition elements, the structured mesh refinement
is a refinement applied to the function space, i.e., we select for refinement the
LR B-splines contributing more to the approximation error rather than the
box-partition elements where a larger error occurs. This approach is justified by
the fact that on an LR-mesh, any new split inserted must traverse at least the
support of one LR B-spline. If we choose to select the elements where the error is
larger, then the refinement has to be extended anyway to traverse the support of
at least one LR B-spline containing the elements, resulting in a refinement of the
LR B-spline basis. Moreover, since several LR B-splines contain such elements,
those chosen for the refinement extension could be not those contributing more
to the error, resulting in a suboptimal refinement, or we could refine more LR
B-splines than necessary, wasting degrees of freedom.

Once the LR B-splines are selected, we refine them by halving the interval
steps in their knot vectors. This corresponds to the insertion of a net of meshlines
in the B-spline supports on the mesh. We therefore perform the LR B-spline
generation algorithm described in Definition II.2.5. Every selected LR B-spline
is fragmented into LR B-splines with smaller support and replaced by them. The
LR-mesh obtained in this way will be called a structured LR-mesh.

In summary, the structured mesh refinement consists of two steps:

1. LR B-splines are selected to be refined and not box-partition elements;

2. the interval steps of their knot vectors are halved to obtain the new
LR-mesh.

Figure II.6 shows two iterations of such refinement. In general, the structured
mesh refinement does not produce LR-meshes with the N2S property. The
LR-mesh in Figure II.6(f) is an example as explained in Figure II.7. Furthermore,
the structured mesh refinement may produce linearly dependent sets of LR
B-splines. Figure II.8 shows an example for bidegree (4, 4).

On the other hand, the standard B-splines defined on a plain tensor mesh are
locally linearly independent, and the meshes provided by the structured mesh
refinement are locally tensor meshes far from the boundary of the region where
the structured mesh refinement is applied. The LR B-splines defined in these
zones of the mesh behave like the standard B-splines, and therefore are locally
linearly independent. On the boundary of the region where the refinement has
been applied, LR B-splines with smaller support can be nested in LR B-splines
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(a) (b) (c)

(d) (e) (f)

Figure II.6: Two iterations of the structured mesh refinement of bidegree (2, 2).
We consider the initial open tensor mesh with internal meshlines of multiplicity
1 in (a). Figure (b) shows the support of an LR B-spline selected for refinement.
We refine it by halving the interval steps in its knot vectors. This results in
the insertion of a net of meshlines in the LR-mesh as shown in (c). In (d) we
select another LR B-spline in the new set of LR B-splines and we refine it as
illustrated in (e). Figure (f) depicts the final mesh obtained.

with larger support. Hence, in such case the resulting LR-mesh does not have
the N2S property.

The idea for our refinement strategy, which will be called N2S structured
mesh refinement, is therefore to recover the N2S property in the mesh by
slightly modifying it in these transition regions. When an LR B-spline B[xxx2, yyy2]
is nested into another LR B-spline B[xxx1, yyy1], one could prolong the splits
in M(xxx2, yyy2) in some direction to traverse entirely suppB[xxx1, yyy1]. This, by
Definition II.2.5, would refine B[xxx1, yyy1] in LR B-splines that turn out not to have
nested LR B-splines in their supports anymore. This last statement is formalized
in Corollary II.3.4. To this end, we first need to introduce the orientation of
T-vertices in a box-partition and prove the N2S property for LR-meshes with a
particular structure.

Definition II.3.1. Any T-vertex in a box-partition is the intersection of two
collinear meshlines and another meshline, say γ, orthogonal to them. We call
the T-vertex vertical if γ is vertical, and horizontal otherwise.

Definition II.3.2. An LR-mesh M on the domain Ω is said to be tensorized
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(a) (b) (c) (d)

Figure II.7: An LR B-spline nested in another LR B-spline, which in turn is
nested in another LR B-spline on a structured LR-mesh for bidegree (2, 2).
Consider again the mesh in Figure II.6(f). In (a)–(c) we depict the supports of
three LR B-splines on this mesh. The support in (a) is contained in the interior
of the support in (b) and (c), and the support in (b) is contained in the interior
of the support in (c). Therefore, the LR B-spline considered in (a) is nested both
in the LR B-splines in (b) and (c), and the LR B-spline in (b) is nested in the
LR B-spline in (c). Hence, the considered mesh does not have the N2S property.

(a) (b) (c)

Figure II.8: A structured mesh with a linear dependence relation among the LR
B-splines of bidegree (4,4) defined in the highlighted region in (c). We start by
considering an open tensor mesh with interior meshlines of multiplicity 1 as in (a).
Then, we apply two iterations of structured mesh as shown in (b)–(c). The LR
B-splines with support in the region highlighted in (c) are in a linear dependence
relation. In particular, the region corresponds to the support of an LR B-splines
that has many nested LR B-splines in it. One can prove the existence of the
linear dependence relation by computing the spline space dimension and the
number of LR B-splines defined on the mesh as explained in the examples of
[20]. This configuration can be reproduced for any bidegree (p1, p2) with pk ≥ 4
for k = 1, 2.

in the k-th direction, for k ∈ {1, 2}, if all the internal k-meshlines inM are
contained in k-splits crossing Ω entirely, i.e., there are no vertical, if k = 1, or
horizontal, if k = 2, T-vertices in the interior of Ω.
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Proposition II.3.3. Let M be an LR-mesh tensorized in the k-th direction for
some k ∈ {1, 2}. Then, the LR B-splines defined onM are all non-nested.

Proof. Without loss of generality, we can assume thatM is tensorized in the first
direction, i.e., the vertical meshlines are all contained in vertical splits crossing
the domain entirely. This means that in M no vertical meshline ends in the
interior of the domain and therefore in the interior of the support of any LR
B-splines defined on M. We now proceed by contradiction and assume that
there exists an LR B-spline in M, say B2 = B[xxx2, yyy2], nested in another, say
B1 = B[xxx1, yyy1]; see Definition II.2.6. This can happen only if they share the same
knot vector in the x-direction, xxx1 = xxx2. In particular, their supports have the
same extreme values in the x-direction. This implies that all the horizontal splits,
counting the multiplicities, ofM traversing suppB2 must traverse suppB1 as
well. Since B2 � B1 and B1 has minimal support (as it is an LR B-spline), this
means yyy1 = yyy2, and as a consequence we have B1 = B2. This is a contradiction
and concludes the proof. �

Corollary II.3.4. Given an LR-mesh M, let B = B[xxx,yyy] and B1 = B[xxx1, yyy1],
. . . , Bn = B[xxxn, yyyn] be LR B-splines defined on M such that B1, . . . , Bn � B.
Let N be the mesh defined by the restriction of M to the meshlines of
M(xxx,yyy),M(xxx1, yyy1), . . . ,M(xxxn, yyyn). Then,

1. there are at least one horizontal T-vertex and one vertical T-vertex of N
in the interior of suppB;

2. by extending all the splits of N in some direction to cross suppB entirely,
B is refined, by Definition II.2.5, in LR B-splines that do not have any
nested LR B-splines anymore.

Proof.

1. Assume that there are no vertical T-vertices of N in the interior of suppB.
Then, N would be tensorized in the first direction. By Proposition II.3.3,
it would imply that all the LR B-splines defined on N are non-nested,
which is a contradiction. Analogously, one can prove that at least one
horizontal T-vertex of N must be in the interior of suppB.

2. Since B contains the support of other B-splines, N 6= M(xxx,yyy) and in
particular there exist at least one horizontal T-vertex and one vertical
T-vertex by the previous item. We now focus on the vertical T-vertices,
but of course the same argument can also be carried out for the horizontal
T-vertices. We extend all the vertical splits in N to cross suppB entirely,
and denote this new mesh as Ñ . By Definition II.2.5, the extensions trigger
a refinement of B via knot insertions. Ñ is tensorized in the first direction
and, by Proposition II.3.3, no LR B-spline defined on Ñ is nested into
another.

�
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(a)

, , ,

, .
(b)

(c)

, , , ,

, , .
(d)

Figure II.9: Example of a vertical tensor expansion. We consider five LR B-
splines of bidegree (2, 2), namely B and B1, . . . , B4, with suppB1, . . . , suppB4

contained in the upper left corner of suppB. The mesh N , of multiplicity 1,
generated by the meshlines of B,B1, . . . , B4 is depicted in (a) and the supports of
the LR B-splines are shown in (b). In (c) we perform a vertical tensor expansion
of B1, . . . , B4 in B. In (d) the supports of the new set of LR B-splines are shown:
none of them has a nested LR B-spline anymore.

The extension of the splits considered in item 2 of Corollary II.3.4 will be
called a one-directional tensor expansion of B1, . . . , Bn in B. An example
is illustrated in Figure II.9.

The N2S structured mesh refinement is defined algorithmically as follows. We
start from a structured mesh refinement to obtain a new set of LR B-splines. We
then collect in a set B all those LR B-splines that have nested LR B-splines in
their supports. If B is non-empty, we select an LR B-spline B in B and we apply
a one-directional tensor expansion to it. This triggers a refinement of the LR
B-spline set, and therefore it changes also the set B. We repeat this procedure
till B becomes empty. In Theorem II.3.5 we shall prove that this always happens
in a finite number of steps. This procedure is sketched in Algorithm II.1. The
one-directional tensor expansions are performed by alternating the direction for
i even and odd, respectively, in order to bound the thinning of the box-partition
elements in a specific direction and preserve the uniformity of the mesh as
much as possible. The LR-mesh obtained in this way will be called an N2S
structured LR-mesh, or in short N2S2-mesh.

Theorem II.3.5. Given an axis-aligned rectangular domain Ω ⊆ R2, let B1 be
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Algorithm II.1: N2S structured mesh refinement.
1 B1 is the B-spline set on the open tensor mesh equal to the domain’s

boundary;
2 for i = 1, 2, . . . do
3 perform a structured mesh refinement of Bi;
4 initialize Bi+1 as the LR B-spline set defined on the new LR-mesh;
5 define B = {B ∈ Bi+1 : ∃B′ ∈ Bi+1 with B′ � B};
6 while B 6= ∅ do
7 select B ∈ B;
8 perform a one-directional tensor expansion of the LR B-splines

nested in B;
9 update Bi+1 as the LR B-spline set defined on the new LR-mesh;

10 update B = {B ∈ Bi+1 : ∃B′ ∈ Bi+1 with B′ � B};

the set of standard bivariate B-splines defined on the open tensor mesh whose
meshlines are the edges of ∂Ω. Then,

1. the LR B-spline sets Bi provided by Algorithm II.1 are well defined, i.e.,
the set B of the algorithm becomes empty in a finite number of iterations,
for every index i ≥ 2,

2. all the LR B-splines in Bi are non-nested, for every i ≥ 1.

Proof. Without loss of generality, we can assume that Ω = [0, 1] × [0, 1]. We
proceed by induction on the index of the B-spline set. For i = 1, B1 is the set
of standard B-splines on the open tensor mesh equal to the domain’s boundary
and we know they are locally linearly independent. By Theorem II.2.7 this is
equivalent to be all non-nested. Assume now that Bi is well defined and that
the functions in it are all non-nested. Let us then prove that also Bi+1 is well
defined and there is no LR B-spline nested into another LR B-spline of it. At
every loop iteration in the algorithm, the LR B-splines that have a nested LR
B-spline in their support are collected in the set B. Therefore, whenever we
can show that B becomes empty after a certain iteration of the loop, we can
immediately conclude both statements in the theorem.

By Corollary II.3.4, all the one-directional tensor expansions performed to
define the set Bi+1 can be done in the same direction k ∈ {1, 2}, which is therefore
fixed once and for all by the index i+ 1. The length of the LR B-spline supports
in the (3−k)-th direction at any iteration of the loop cannot become shorter than
2−(i+1) regardless of the number of one-directional tensor expansions applied
until then. This is because the (3−k)-splits on the LR-meshes defined in the loop
are fixed by the structured mesh refinement performed on Bi at the beginning of
the process and the minimal length of the box-partition elements in the (3−k)-th
direction is 2−(i+1). Therefore, the split extensions applied when performing
a one-directional tensor expansion in the k-th direction have lengths bounded
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(a) 1430 LR B-splines (b) 1894 LR B-splines (c) 2243 LR B-splines

Figure II.10: Visual comparison of the meshes obtained on a diagonal refinement
in [0, 1]2 and for bidegree (2, 2) when using the structured mesh (a), the N2S
structured mesh (b) and the mesh refinement proposed in [3] (c).

from below by 2−(i+1) in all the steps of the loop. This means that in a finite
number of one-directional tensor expansions a k-split could be extended up to the
domain’s boundary, if needed, to remove nestedness issues, as these extensions
cannot become arbitrarily small. In the worst case scenario, we must extend all
the k-splits to cross entirely the domain. However, in this case, the resulting
LR-mesh would be tensorized in the k-th direction. By Proposition II.3.3, there
are only non-nested LR B-splines on this LR-mesh and thus B becomes empty
in a finite number of loop iterations. �

In practice, the loop on B stops quickly and the N2S2-meshes are far from
being fully tensorized in one direction. In Figure II.10 we compare the structured
LR-mesh (a), the corresponding N2S2-mesh (b) and the LR-mesh proposed in
[3] (c) on a diagonal refinement in [0, 1]2, when using 7 levels of mesh resolution
and bidegree (2, 2). We also indicate the number of LR B-splines defined on
each of these meshes. We recall that the LR B-splines are not locally linearly
independent on the structured LR-mesh, whereas they are on the N2S2-mesh
and the LR-mesh proposed in [3].

In Figure II.10(b) and Figure II.11 one can see how the refinement in the
N2S2-meshes propagates from the region where the structured mesh refinement
has been applied. In all the considered cases, the refinement does not heavily
spread out. It is important to highlight, however, that the prolongation of the
splits needed to recover the N2S property is not unique. Indeed, when refining an
LR B-spline to remove nestedness issues, the inserted split prolongations refine
not only the considered LR B-spline but in general also other LR B-splines in the
neighborhood. Then, some of the newly introduced neighboring LR B-splines
might not need a one-directional tensor expansion anymore and the ordering
used for removing nestedness has thus an effect on the resulting mesh. One
might consider to treat all the LR B-splines “in parallel”, i.e., first collect all the
split extensions needed to remove nestedness in all the LR B-splines requiring a
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treatment and then insert all of them at the same time to refine the function
basis. This might result in a more uniform propagation of the refinement out of
the region where the structured mesh has been applied. On the other hand, by
doing this, some split extensions could be unnecessary for recovering the N2S
property. Therefore, in general, also the number of LR B-splines on these meshes
would be higher than the number obtained when treating one LR B-spline at
time. In the examples presented in this paper we do not remove nestedness “in
parallel”. Hence, the resulting N2S2-meshes depend on the order used when the
one-directional tensor expansions are applied. On the other hand, the number
of LR B-splines will be closer to the number of LR B-splines obtained when
performing only the structured mesh refinement, i.e., closer to the “optimal”
number of LR B-splines needed to reduce the error while preserving the local
linear independence.

We finally remark that one could also opt for full tensor expansions in the
supports, instead of one-directional tensor expansions, to solve nestedness issues.
The proof of Theorem II.3.5 could be easily rephrased for the case of full tensor
expansions. The key is that we only prolong splits provided by the structured
mesh refinement performed at the beginning of the process. Therefore, if we
do full tensor expansions, in the worst case scenario we would end up with a
standard tensor mesh of size h = 2−(i+1) to define the set Bi+1, instead of an
LR-mesh tensorized in one direction. In such case, B would still become empty
in a finite number of loop iterations. However, we decided to do the expansion
of the splits only in one direction at a time because it reduces the propagation
more.

II.4 Application I: Quasi-interpolation

A quasi-interpolation method is a procedure to compute the coefficients assigned
to the basis elements of a prescribed function space, in order to approximate
arbitrary functions or data sets in it. The resulting approximant is called a
quasi-interpolant (QI). The computation of any of such coefficients may depend
only on the data/function restricted to the corresponding basis element’s support
(local method), and perhaps some neighboring other basis elements’ supports, or
it can depend on the data/function in the entire domain (global method), as
in the least-squares method. Given a function f and an approximation space,
whose basis is denoted by B, we write a related QI in the form

Qf :=
∑
B∈B

λB(f)B,

where λB(f) is the coefficient of the basis element B ∈ B computed by the
selected method.

Definition II.4.1. A quasi-interpolation method such that Qf = f for all f in a
space V is said to reproduce space V .
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(a) 10281 LR B-splines (b) 12438 LR B-splines

(c) 13459 LR B-splines (d) 15993 LR B-splines

(e) 8608 LR B-splines (f) 10841 LR B-splines

Figure II.11: Meshes obtained in [0, 1]2 with bidegree (2, 2) for 3 different
regions of refinement by performing 8 levels of structured mesh (left column)
and corresponding N2S structured mesh (right column).
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When using spline spaces of bidegree ppp as approximation spaces, a common
requirement is that the polynomial space Πppp is reproduced by the quasi-
interpolation method, in order to ensure good approximation properties. A
general recipe for constructing local quasi-interpolation methods for tensor spline
spaces, with the polynomial reproduction property, can be found in [16].

Recipe II.4.2. Let f be a given function defined on the rectangle Ω. Given a
bidegree ppp, let M̃ be an open tensor mesh on Ω, and let B(M̃) be the set of
tensor B-splines of bidegree ppp on M̃. We compute the coefficient λB(f), for
every B = B[xxx,yyy] ∈ B(M̃), as follows:

1. let U ⊆ R2 be an open set that intersects the interior of suppB (for
instance, U can be a box-partition element ofM(xxx,yyy)) and let B(U) be
the subset of B(M̃) consisting of all the tensor B-splines not identically
zero on U ;

2. choose a local approximation method PU such that PUq = q for all q ∈ Πppp
defined on U (typical choices are least-squares or interpolation methods);

3. let g|U be the restriction of g to U , then

(PUf)|U =
∑

B̃∈B(U)

b
B̃

(f)B̃|U ,

for some coefficients b
B̃

(f) provided by the chosen local approximation
method;

4. since B ∈ B(U), set λB(f) := b
B̃

(f).

Then, define
Qf :=

∑
B∈B(M̃)

λB(f)B.

Inspired by the above recipe for tensor splines and similar to the local quasi-
interpolation strategy developed for THB-splines in [24, 25], we can formulate a
general recipe for constructing QIs in the space spanned by BLR(M) on a given
open LR-meshM as follows: select for each LR B-spline B in BLR(M) a local
tensor space containing B, and pick the coefficient corresponding to B in the
expression of any QI in such a tensor space. In particular, when the smallest
local tensor space containing each basis function B is considered, we arrive at
the following recipe.

Recipe II.4.3. Let f be a given function defined on the rectangle Ω. Given a
bidegree ppp, let M be an open LR-mesh on Ω, and let BLR(M) be the set of
LR B-splines of bidegree ppp onM. We compute the coefficient λB(f), for every
B = B[xxx,yyy] ∈ BLR(M), as follows:

1. let M̃B be the open (tensor) mesh obtained by rising the boundary meshline
multiplicities ofMB =M(xxx,yyy) to full multiplicity;
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2. let B(M̃B) be the set of tensor B-splines defined on M̃B ;

3. consider a quasi-interpolation method in the space spanned by B(M̃B),

QBf =
∑

B̃∈B(M̃B)

λ
B̃

(f)B̃,

reproducing all g ∈ Πppp (for instance, use Recipe II.4.2);

Then, define
Qf :=

∑
B∈BLR(M)

λB(f)B.

Since B ∈ B(M̃B) for any B ∈ BLR(M), the function Qf in Recipe II.4.3 is
well defined. Moreover, it will reproduce polynomials on the entire domain if
the LR-mesh has the N2S property as stated in the following proposition.

Proposition II.4.4. Given a bidegree ppp, let M be an open LR-mesh and let
BLR(M) be the set of LR B-splines of bidegree ppp on M. Assume that M has
the N2S property, then:

Qg = g, ∀g ∈ Πppp,

where the quasi-interpolation operator Q is defined in Recipe II.4.3.

Proof. From [2, Theorem 4.6], ifM has the N2S property, then for all g ∈ Πppp
we have

g =
∑

B∈BLR(M)

gBB, gB ∈ R,

where for all B ∈ BLR(M), the coefficient gB only depends on g and on the
knots defining the LR B-spline B. Therefore, gB remains the same if we represent
g in any set of tensor B-splines containing B. Since, according to Recipe II.4.3,
any QB reproduces all polynomials in Πppp we have

gB = λB(g), ∀B ∈ BLR(M), g ∈ Πppp,

which completes the proof. �

We have tested the quasi-interpolation strategy described in Recipe II.4.3
on N2S2-meshes to approximate polynomials and transcendent functions. Given
an N2S2-mesh M, we first have computed a QI based on B(M̃B), for all the
LR B-splines B ∈ BLR(M) of bidegree ppp = (p1, p2). As local approximation in
the computation of these QIs we have used interpolation, i.e., we have selected
(p1 + 1)(p2 + 1) points in a box-partition element of M̃B and then we have set a
linear system by evaluating f and the tensor B-splines in B(M̃B) at these points.
By sampling such a number of points in the same box-partition element, this
guarantees polynomial reproduction of the quasi-interpolation method in the
spaces B(M̃B), for B varying in BLR(M). Therefore, also the resulting quasi-
interpolation method on BLR(M) has the polynomial reproduction property
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(a)

# basis functions
levels Tensor mesh N2S2-mesh max error
1 36 36 5.686e-01
2 100 86 4.645e-01
3 324 161 2.575e-01
4 1156 254 1.472e-01
5 4356 363 5.955e-02
6 16900 450 2.156e-02
7 66564 537 1.415e-02

(b)

Figure II.12: (a) Transcendent function in [−1, 1]2, (b) B-spline set cardinalities
of bidegree (2, 2) for different levels of maximal resolution.

by Proposition II.4.4. Indeed, in all the tests with polynomial functions of
bidegree at most ppp, the maximum error was in the order of the machine precision,
regardless of the number of iterations performed to construct the N2S2-mesh.
The maximum error was computed on a uniform 150 × 150 grid.

As test with a transcendent function, we have considered

f(x, y) = 2
3e
−
√

(10x−3)2+(10y−3)2 + 2
3e
−
√

(10x+3)2+(10y+3)2 + 2
3e
−
√

(10x)2+(10y)2
,

which is characterized by three steep peaks on the square [−1, 1]2 located at
(−0.3,−0.3), (0, 0) and (0.3, 0.3); see Figure II.12(a). This function has also
been used in [25] to investigate the approximation power of a similar quasi-
interpolation method developed for THB-splines. In table of Figure II.12(b), we
compare the number of basis functions of bidegree (2, 2) when considering global
tensor meshes and local N2S2-meshes for different levels of maximal resolution
(for level `, the smallest box-partition elements on the mesh have length 2−`).
The N2S2-mesh is produced by refining the LR B-splines whose supports contain
one of the three points where a peak occurs via structured mesh and then by
recovering the N2S property via one-directional tensor expansions. For a given
maximal resolution level, the optimal maximum error, i.e., the maximum error
when using the global tensor mesh, is preserved by the N2S2-mesh. However, the
number of B-splines is significantly different and the discrepancy exponentially
grows with the maximal resolution level.

II.5 Application II: Isogeometric analysis

Isogeometric analysis (IgA), introduced in [14], is a technique to perform
numerical simulations on complex geometries. The numerical solution is
represented by means of the same functions used for the domain modeling.
Nowadays, complex geometries are expressed in terms of computed aided design
(CAD) technologies, such as B-splines, non-uniform rational B-splines (NURBS)
and their generalizations to address adaptive refinements.

89



II. Adaptive refinement with locally linearly independent LR B-splines: Theory
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Figure II.13: Exact solution of the Poisson problem.

In this section, we adopt the IgA approach, using our LR refinement strategy,
to approximate the solution of the Poisson problem on Ω = [0, 1]2,{

−∆u = f in Ω̊
u = uD, on ∂Ω, (II.2)

whose exact solution is

u(x, y) = arctan
(

100
(√

(x− 1.25)2 + (y + 0.25)2 − π

3

))
;

see Figure II.13. This example is a good benchmark for numerical schemes,
as the sharp interior layer of the exact solution highlights the approximation
quality, and it has been used extensively in the literature; see, e.g., [5, 15, 19].

In the context of Galerkin discretizations, two properties are desirable:

• (local) linear independence of the space generators,

• refinement adaptivity.

The linear independence of the functions used as building blocks of the numerical
solution avoids the numerical complexity posed by the singularity of the matrices
associated to the problem discretization. The refinement adaptivity is desired
for balancing accuracy and computational cost as it allows for a higher precision,
only there where it is needed to reproduce fast variations of the exact solution.
LR B-splines on N2S2-meshes are suitable candidates as both the (local) linear
independence of the space generators and the adaptivity of the refinement are
guaranteed.

In Figure II.14 we compare the L∞-norm and the L2-norm of the error
(Figures II.14(a) and II.14(b) respectively), using bidegree (2, 2) with global
tensor meshes and local N2S2-meshes for different levels of maximal resolution
to approximate the solution of the Poisson problem (II.2). The N2S2-mesh is
computed by first applying the structured mesh to the LR B-splines whose
supports intersect the curve where the sharp interior layer in the exact solution
occurs, and then by performing one-directional tensor expansions to recover the
N2S property. The error norms, which are computed discretely on a uniform grid
of 1000× 1000 points, are plotted in log-log scale with respect to the number of
LR B-splines on the mesh. The solid line with circular markers shows the decay
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Figure II.14: Decay of the L∞-norm (a) and L2-norm (b) of the error when
approximating the solution of problem (II.2) with B-splines of bidegree (2, 2) on
tensor meshes (solid line) and N2S2-meshes (dashed line) for different levels of
maximal resolution.

when using global tensor meshes, whereas the dashed line with star markers the
decay for the N2S2-meshes. In the figures, the first marker corresponds to the
4 × 4 tensor mesh, for maximal resolution level ` = 2, and it is the maximal
level for which the LR B-spline and standard tensor B-spline sets coincide.
When considering a comparable number of functions, the N2S2-mesh leads to a
significant reduction of both the L∞-norm and the L2-norm of the error with
respect to the tensor mesh, thanks to the adaptivity of the refinement.

II.6 Conclusion

LR B-splines are one of the most elegant extensions of univariate B-splines on
local tensor structures that allow local refinement. They possess almost all the
properties of classical B-splines, but they are not always linearly independent.
Recently, a characterization of LR-meshes ensuring local linear independence of
the corresponding LR B-splines has been presented in the literature. However,
a practical adaptive refinement strategy for LR-meshes that maintain such a
property was missing. In this paper, we have filled this gap by describing an
adaptive refinement strategy that produces LR-meshes where the corresponding
LR B-splines are locally linearly independent. Subsequently, we have exploited
the local linear independence of the LR B-splines to construct efficient quasi-
interpolation schemes and to solve elliptic problems using the isogeometric
Galerkin method.
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III

Abstract

Mean value interpolation is a method for fitting a smooth function to
piecewise-linear data prescribed on the boundary of a polygon of arbitrary
shape, and has applications in computer graphics and curve and surface
modelling. The method generalizes to transfinite interpolation, i.e., to
any continuous data on the boundary but a mathematical proof that
interpolation always holds has so far been missing. The purpose of this
note is to complete this gap in the theory.

III.1 Introduction

One of the main uses of generalized barycentric coordinates (GBCs) is to
interpolate piecewise-linear data prescribed on the boundary of a polygon with
a smooth function. This kind of barycentric interpolation has been used, for
example, in computer graphics, as the basis for image warping, and in higher
dimension, for mesh deformation.

One type of GBCs that is frequently used for this is mean value (MV)
coordinates due to a simple closed formula. MV coordinates have been studied
extensively in various papers [2] but while they are simple to implement, a
mathematical proof of interpolation seems surprisingly difficult. A proof for
convex polygons is relatively simple and follows from the fact that MV coordinates
are positive in this case. Interpolation for a convex polygon holds in fact for any
positive barycentric coordinates; see [4]. For arbitrary polygons, a specific proof
of interpolation for MV coordinates was derived in [6].

The MV interpolant to piecewise-linear boundary data is based on integration
with respect to angles around each chosen point inside the polygon. This
construction extends in a natural way to any continuous boundary data thus
providing a transfinite interpolant [1, 7]. Such interpolation could have various
applications, one of which is its use as a building block for interpolants of
higher order that also match derivative data on the boundary. However, there
is currently no mathematical proof of interpolation in the transfinite setting
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III. Transfinite mean value interpolation over polygons

in all cases, only numerical evidence. Like in the piecewise-linear case, when
the polygon is convex, interpolation is easier to establish. In fact it was shown
in [1] for more general domains, convex or otherwise, under the condition that
the distance between the external medial axis of the domain and the domain
boundary is strictly positive. This latter condition trivially holds for convex
domains since there is no external medial axis in this case.

This still leaves open the question of whether MV interpolation really
interpolates any continuous data on the boundary of an arbitrary polygon,
and this is what we establish in this paper. The proof parallels that of [6] in that
we treat interpolation at edge points and vertices separately: in Theorems III.3.1
and III.4.1 respectively. At the end of the paper we give two examples that
numerically confirm the interpolation property.

Mean value coordinates have been generalized to 3D geometry based on
triangular meshes in [5, 7], and the numerical examples in [5] suggest that
the interpolation property holds for arbitrary (non-convex) meshes, at least
for piecewise-linear boundary data. However, there does not seem to be any
straightforward way to prove this based on the proof in the 2D case.

It would also be interesting to establish transfinite interpolation over more
general domains with weaker conditions on the shape of the boundary than those
used in [1].

III.2 Definitions

Let Ω ⊂ R2 be a polygon with vertices V and edges E. Suppose that f : ∂Ω→ R
is a continuous function on the boundary ∂Ω. We define a function g : Ω→ R as
follows. For each edge e ∈ E, let nnne denote the outward unit normal to e with
respect to Ω, and for each point xxx ∈ Ω, let he(xxx) be the signed distance of xxx to
the straight line through e,

he(xxx) = (yyy − xxx) ·nnne,

for any yyy ∈ e. We let τe(xxx) ∈ {−1, 0, 1} be the sign of the distance,

τe(xxx) = sgn(he(xxx)).

Let S1 denote the unit circle in R2. For xxx ∈ Ω, let ê(xxx) ⊂ S1 denote the circular
arc on S1 formed by projecting e onto the unit circle centred at xxx,

ê(xxx) =
{

yyy − xxx
‖yyy − xxx‖

: yyy ∈ e
}
,

with ‖ · ‖ the Euclidean norm. This arc is just a point in the case that τe(xxx) = 0.
Suppose τe(xxx) 6= 0. Then for each unit vector µµµ ∈ ê(xxx), let yyye(xxx,µµµ) be the unique
point of e such that

yyye(xxx,µµµ)− xxx
‖yyye(xxx,µµµ)− xxx‖ = µµµ,
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Interpolation on an edge

and let

Ie(xxx) =
∫
ê(xxx)

1
‖yyye(xxx,µµµ)− xxx‖ dµ

µµ > 0, Ie(xxx; f) =
∫
ê(xxx)

f(yyye(xxx,µµµ))
‖yyye(xxx,µµµ)− xxx‖ dµ

µµ.

In the case that τe(xxx) = 0, we define Ie(xxx) = Ie(xxx; f) = 0.
We now define

g(xxx) = If(xxx) =
∑
e∈E

τe(xxx)Ie(xxx; f)
/
φ(xxx), (III.1)

where
φ(xxx) =

∑
e∈E

τe(xxx)Ie(xxx). (III.2)

As shown in [3], if e = [vvv1, vvv2] then

Ie(xxx) = tan(αe(xxx)/2)
(

1
‖vvv1 − xxx‖

+ 1
‖vvv2 − xxx‖

)
, (III.3)

where αe(xxx) ∈ [0, π) is the angle at xxx of the triangle [xxx,vvv1, vvv2]. It was shown
in [6, Theorem 4.3] that φ(xxx) > 0 for all xxx ∈ Ω, and therefore g is well defined.
Furthermore, by the results of [6, Section 3], in the case that f is the restriction
of a linear function R2 → R to ∂Ω, g interpolates f .

III.3 Interpolation on an edge

Theorem III.3.1. Let yyy∗ be an interior point of some edge of ∂Ω. Then
g(xxx)→ f(yyy∗) as xxx→ yyy∗ for xxx ∈ Ω.

Proof. From the form of (III.1),

g(xxx)− f(yyy∗) =
∑
e∈E

τe(xxx)Ie(xxx; f̃)
/
φ(xxx),

where f̃(yyy) := f(yyy)− f(yyy∗) and therefore

|g(xxx)− f(yyy∗)| ≤
∑
e∈E

Ie(xxx; |f̃ |)
/
φ(xxx). (III.4)

Let [vvv1, vvv2] ∈ E be the edge containing yyy∗, as in Figure III.1. Let ε > 0. By

yyy∗

xxx

yyy2vvv2
yyy1

vvv1

Figure III.1: Interpolation at an edge point yyy∗.
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the continuity of f , there is some δ, where

0 < δ < min{‖vvv1 − yyy∗‖, ‖vvv2 − yyy∗‖},

such that if yyy ∈ [vvv1, vvv2] and ‖yyy−yyy∗‖ ≤ δ then |f(yyy)−f(yyy∗)| < ε. Let yyyj ∈ [yyy∗, vvvj ],
j = 1, 2, be the point such that ‖yyyj − yyy∗‖ = δ, and let e0 = [yyy1, yyy2]. Then,∑

e∈E
Ie(xxx; |f̃ |) = Ie0(xxx; |f̃ |) +

∑
e∈F

Ie(xxx; |f̃ |),

where
F = {[vvv1, yyy1], [yyy2, vvv2]} ∪ (E \ [vvv1, vvv2]),

and it follows that |g(xxx)− f(yyy∗)| ≤ γ(xxx)/φ(xxx), where

γ(xxx) = εIe0(xxx) + 2M
∑
e∈F

Ie(xxx),

and
M := sup

yyy∈∂Ω
|f(yyy)|. (III.5)

Similar to γ(xxx), we can express φ(xxx) as

φ(xxx) = τe0(xxx)Ie0(xxx) +
∑
e∈F

τe(xxx)Ie(xxx).

For xxx close enough to yyy∗, τe0(xxx) = 1, and then

γ(xxx)
φ(xxx) =

ε+ 2M
∑
e∈F Ie(xxx)/Ie0(xxx)

1 +
∑
e∈F τe(xxx)Ie(xxx)/Ie0(xxx) .

As xxx→ yyy∗, αe0(xxx)→ π, and since yyy∗ 6∈ e for all e ∈ F ,

αe(xxx)→ αe(yyy∗) < π, e ∈ F.

Therefore, by (III.3), as xxx→ yyy∗,

Ie0(xxx)→∞ and Ie(xxx)→ Ie(yyy∗) 6=∞, e ∈ F.

Thus γ(xxx)/φ(xxx)→ ε as xxx→ yyy∗. Hence,

lim sup
xxx→yyy∗

|g(xxx)− f(yyy∗)| ≤ ε

for any ε > 0 which shows that |g(xxx)− f(yyy∗)| → 0 as xxx→ yyy∗. �
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III.4 Interpolation at a vertex

Theorem III.4.1. For vvv ∈ V , g(xxx)→ f(vvv) as xxx→ vvv for xxx ∈ Ω.

Proof. Similar to (III.4), from the form of (III.1),

|g(xxx)− f(vvv)| ≤
∑
e∈E

Ie(xxx; |f̃ |)
/
φ(xxx),

where f̃(yyy) := f(yyy)− f(vvv).
Let vvv1 and vvv2 be the two neighbouring vertices of vvv with vvv1, vvv,vvv2 ordered

anticlockwise w.r.t. ∂Ω as in Figures III.2 and III.3. Let ε > 0. By the continuity

vvv
yyy2

yyy1
vvv2

xxx
vvv1

Figure III.2: Interpolation at a convex vertex vvv.

vvv

xxx

yyy2
vvv2

yyy1
vvv1

vvv

yyy2
vvv2

yyy1

xxx

vvv1

vvv

yyy1
vvv1yyy2

xxx

vvv2

Figure III.3: Interpolation at a concave vertex vvv.

of f , there is some δ, where

0 < δ < min{‖vvv1 − vvv‖, ‖vvv2 − vvv‖},

such that if yyy is in [vvv1, vvv] or [vvv,vvv2] and ‖yyy − vvv‖ ≤ δ then |f(yyy)− f(vvv)| < ε. Let
yyyj ∈ [vvv,vvvj ], j = 1, 2, be the point such that ‖yyyj − vvv‖ = δ, and define e1 = [yyy1, vvv]
and e2 = [vvv,yyy2]. Then,∑

e∈E
Ie(xxx; |f̃ |) = Ie1(xxx; |f̃ |) + Ie2(xxx; |f̃ |) +

∑
e∈F

Ie(xxx; |f̃ |),

where
F = {[vvv1, yyy1], [yyy2, vvv2]} ∪ (E \ {[vvv1, vvv], [vvv,vvv2]}).

It follows that |g(xxx)− f(yyy∗)| ≤ γ(xxx)/φ(xxx), where

γ(xxx) = ε(Ie1(xxx) + Ie2(xxx)) + 2M
∑
e∈F

Ie(xxx),
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and M is as in (III.5). We can similarly express φ(xxx) as

φ(xxx) = τe1(xxx)Ie1(xxx) + τe2(xxx)Ie2(xxx) +
∑
e∈F

τe(xxx)Ie(xxx).

Then using (III.3), and multiplying both γ(xxx) and φ(xxx) by ‖vvv − xxx‖, we have

γ(xxx)
φ(xxx) = ε(tan(αe1(xxx)/2) + tan(αe2(xxx)/2)) +A(xxx)

τe1(xxx) tan(αe1(xxx)/2) + τe2(xxx) tan(αe2(xxx)/2) +B(xxx) ,

where A(xxx), B(xxx) → 0 as xxx → vvv. Letting τj = τej and αj = αej , j = 1, 2, and
using the fact that − tan(β) = tan(−β) for β ∈ R, we can rewrite this as

γ(xxx)
φ(xxx) = ε(tan(α1(xxx)/2) + tan(α2(xxx)/2)) +A(xxx)

tan(τ1(xxx)α1(xxx)/2) + tan(τ2(xxx)α2(xxx)/2) +B(xxx) .

Next, using the identity

tan(β1) + tan(β2) = sin(β1 + β2)
cos(β1) cos(β2) ,

and the fact that cos(−β) = cos(β), it follows that

γ(xxx)
φ(xxx) = ε sin((α1(xxx) + α2(xxx))/2) + Ã(xxx)

sin((τ1(xxx)α1(xxx) + τ2(xxx)α2(xxx))/2) + B̃(xxx)
,

where

Ã(xxx) = cos((α1(xxx)/2) cos((α2(xxx)/2)A(xxx),
B̃(xxx) = cos((α1(xxx)/2) cos((α2(xxx)/2)B(xxx),

and so also Ã(xxx), B̃(xxx)→ 0 as xxx→ vvv.
Finally, we consider the two cases (i) vvv is a convex vertex and (ii) vvv is a

concave vertex. In case (i), referring to Figure III.2 we see that for xxx close
enough to vvv, τ1(xxx) = τ2(xxx) = 1 and so

lim
xxx→vvv

γ(xxx)
φ(xxx) = ε. (III.6)

In case (ii), the values of τ1(xxx) and τ2(xxx) depend on the location of xxx, even when
xxx is close to vvv. However, for any xxx that is close enough to vvv, we have the identity
(observed in [6])

τ1(xxx)α1(xxx) + τ2(xxx)α2(xxx) = α[yyy1,yyy2](xxx).

This can be verified in the three cases illustrated in Figure III.3. In the three
configurations, from left to right, we have, respectively,

α[yyy1,yyy2](xxx) =


α1(xxx) + α2(xxx),
α1(xxx)− α2(xxx),
−α1(xxx) + α2(xxx).
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Thus,

lim
xxx→vvv

(τ1(xxx)α1(xxx) + τ2(xxx)α2(xxx)) = α[yyy1,yyy2](vvv) = α[vvv1,vvv2](vvv) ∈ (0, π).

Since sin((α1(xxx) + α2(xxx))/2) ≤ 1, it follows that in case (ii),

lim sup
xxx→vvv

γ(xxx)
φ(xxx) ≤

ε

sin(α[vvv1,vvv2](vvv)/2) . (III.7)

From (III.6) and (III.7) we deduce that for any type of vertex vvv, |g(xxx)−f(vvv)| → 0
as xxx→ vvv. �

III.5 Numerical examples

In this section we present two examples of transfinite mean value interpolants
of different functions over a polygonal-shaped domain in order to confirm the
theoretical interpolation property proven in Sections III.3 and III.4. Here, we
start with a bivariate function f(x, y) defined in the entire domain Ω. We then
compute the mean value interpolant g(x, y) and compare it with f on Ω. We have
used the boundary integral formula of [1] to evaluate g. This is more efficient
than applying the definition, equation (III.1), which would require computing
intersection points.

The first function we consider is

f(x, y) = x2 − y2

defined on the non-convex polygon in Figure III.4a. Figures III.4a and III.4b
illustrate the exact surface and Figures III.4c and III.4d the corresponding
interpolant g(x, y). Figure III.4e shows the absolute error |f(x, y)−g(x, y)|. The
darker the colour the smaller the error and, as expected, the error vanishes as
we get close to the boundary.
For our second example we chose the function

f(x, y) = 1
9 [tanh(9x− 9y) + 1].

Figures III.5a and III.5b and Figures III.5c and III.5d show the exact surface
and the interpolant, respectively, while Figure III.5e shows the absolute error.
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(a) (b)

(c) (d)

(e)

Figure III.4: (a), (b) Exact surface f(x, y). (c), (d) Corresponding interpolant
g(x, y). (e) Absolute error |f(x, y)− g(x, y)|.
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Numerical examples

(a) (b)

(c) (d)

(e)

Figure III.5: (a), (b) Exact surface f(x, y). (c), (d) Corresponding interpolant
g(x, y). (e) Absolute error |f(x, y)− g(x, y)|.
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Appendix A

Dimension of the spline spaces
The scope of this appendix is to provide a more deep analysis of the dimension
of the spline space over a spline mesh and to justify the LR-rules defined at the
end of Section 1.1 of the introduction. This is a simplified excerpt for the 2D
case of [1], in which the dimension of the spline spaces in dD is addressed for
any d ≥ 1.

Definition A.0.1. Given a sequence of vector spaces Vi, i = n, . . . ,m for some
n ≤ m and linear maps δq : Vq → Vq−1, the composition

V : Vm
δm−−→ Vm−1

δm−1−−−→ · · · δn+1−−−→ Vn (A.1)

is called chain complex if Im δq+1 ⊆ Ker δq for n+ 1 ≤ q ≤ m− 1. For a chain
complex of the form (A.1), we define the qqqth homology of V to be the vector
space Hq(V) = Ker δq/Im δq+1.

As we will see in Theorem A.0.5, in the dimension formula of the spline space
S(N ) over a given spline mesh N , there are terms depending on the homologies
of a particular chain complex, denoted as S(N ), whose vector spaces and linear
maps are defined in what follows.

Definition A.0.2. Given a spline mesh N = (M, µ,ppp) in R2,

• for a (k, a)-meshline γ ∈M, we define

Pγ(N ) := (xk − a)pk−µ(γ)+1 (where (x1, x2) := (x, y)), (A.2)

and the vector space of polynomials in Πppp divisible by Pγ(N ),

∆γ(N ) := {F · Pγ(N ) : F ∈ Πpppγ with pγj := pj for j 6= k

and pγk := µ(γ)− 1},
(A.3)

• for a vertex qqq in V, we define the collection of meshlines

Dqqq(N ) := {γ ∈M : qqq ∈ γ} (A.4)

and the vector space

∆qqq(N ) =
∑

γ∈Dqqq(N )

∆γ(N ). (A.5)

as the smallest vector space including each ∆γ(N ) for γ ∈ Dqqq(N ).
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A. Dimension of the spline spaces

Finally we introduce the spaces

S2(N ) =
⊕

β∈E [β]Πppp

S1(N ) =
⊕

γ∈M[γ]Πppp/∆γ(N )

S0(N ) =
⊕

qqq∈V [qqq]Πppp/∆qqq(N )

(A.6)

with [·] the characteristic function of its argument.

S2(N ) is the space of piecewice polynomials of bidegree ppp over the box-
partition elements, and, if E = {β1, . . . , βnE}, an element in S2(N ) is expressed
as

(fβ1 , . . . , fβnE ) =
nE∑
i=1

[βi]fβi with fβi ∈ Πppp,

for i = 1, . . . , nE . S1(N ) and S0(N ) are quotient spaces and therefore their
elements are classes of polynomial expressions. However, ifM = {γ1, . . . , γnM}
and V = {qqq1, . . . , qqqnV}, then, a class representative in S1(N ) has expression:

(fγ1 , . . . , fγnM ) =
nM∑
i=1

[γi]fγi

with fγi , for i = 1, . . . , nM, a polynomial of degree up to p3−k and pk − µ(γi) if
γi is a k-meshline, and a class representative in S0(N ) has expression:

(fqqq1 , . . . , fqqqnV ) =
nV∑
i=1

[qqqi]fqqqi with fqqqi ∈ Π(p1−µ1(qqqi),p2−µ2(qqqi))

for i = 1, . . . , nV .

Definition A.0.3. Given a spline mesh N = (M, µ,ppp) corresponding to a box-
partition E , let β be an element of E . We define the positive boundary of β,
B+
β , as the meshlines ofM contained in the lower and right edges of β and the

negative boundary of β, B−β , as the meshlines ofM contained in the left and
upper edges of β.

Then, we define the boundary map δ2 : S2(N )→ S1(N ) as the linear map
given by

δ2

∑
β∈E

[β]fβ

 =
∑
β∈E

δ2([β])fβ with δ2([β]) :=
∑
γ∈B+

β

[γ]−
∑
γ∈B−

β

[γ]. (A.7)

Let γ be a meshline ofM with qqq1, qqq2 its endpoints increasingly ordered. Similarly
we define the boundary map δ1 : S1(N )→ S0(N ), as the linear map given by

δ1

∑
γ∈M

[γ]fγ

 =
∑
γ∈M

δ1([γ])fγ with δ1([γ]) := [qqq2]− [qqq1]. (A.8)
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Proposition A.0.4 ([1, Lemma 9]). Given a spline mesh N in R2, the following
composition is a chain complex

S(N ) : 0 δ3−→ S2(N ) δ2−→ S1(N ) δ1−→ S0(N ) δ0−→ 0 (A.9)

where δ3, δ0 are the zero mapping while δ2, δ1 are defined in (A.7) and (A.8)
respectively.

The following result is the dimension formula for bivariate spline spaces on
arbitrary spline meshes.

Theorem A.0.5 ([1, Theorem 2]). Let N = (M, µ,ppp) be a spline mesh in R2

corresponding to a box-partition E and let V be the set of vertices of E. Moreover,
let M1,M2 ⊂ M be the collections of 1-meshlines and 2-meshlines in M
respectively. Then the dimension of the spline space S(N ) is given by

dim S(N ) =
∑
qqq∈V

[(p1 − µ1(qqq) + 1)(p2 − µ2(qqq) + 1)]

− (p2 + 1)
∑
γ∈M1

(p1 − µ(γ) + 1)− (p1 + 1)
∑
γ∈M2

(p2 − µ(γ) + 1)

+ |E|(p1 + 1)(p2 + 1) + dimH1(S(N ))− dimH0(S(N )),
(A.10)

where |E| is the cardinality of E, µ1, µ2 are respectively the vertical and horizontal
multiplicities of the box-partition vertices and H1(S(N )), H0(S(N )) are the 1st
and 0th homologies of the chain complex S(N ) defined in (A.9).

As we already mentioned in the introduction, the homological part of equation
(A.10) makes the dimension of the spline spaces unstable under slight changes of
the sizes of the box-partition elements. This implies that two spline spaces of
the same bidegree, defined on meshes with the same topological structure and
meshlines with the same multiplicities might have different dimensions, as shown
in Figure 1.4 in the introduction. In what follows we recall some results from [1]
to estimate the homology dimensions and eventually nullify them to reduce the
spline dimension only to the combinatorial computation of equation (1.3) in the
introduction.

We first present a condition to have zero homology dimensions in the special
case of tensor spline meshes.

Proposition A.0.6 ([1, Corollary 2]). Suppose N = N [τττµ1
1,p1

, τττµ2
2,p2

] is a tensor
spline mesh generated by the spline sequences τττµkk,pk for k = 1, 2. Let dk =
dim S(τττµkk,pk) and let also q′ ∈ {0, 1, 2} be the number of nonzero dk. Then

dimHq(S(N )) = 0 if q 6= q′ (A.11)

Remark A.0.7. In particular, if S(N ) 6= {0}, then both d1, d2 ≥ 1 and
dimH1(S(N )) = dimH0(S(N )) = 0.

109



A. Dimension of the spline spaces

The following result guarantees that the homology term H0(S(N )) has
dimension 0 on any nontrivial spline mesh, i.e., when the spline space S(N ) 6= {0}.

Proposition A.0.8 ([1, Lemma 17]). Given a spline mesh N = (M, µ,ppp), for
k = 1, 2 and a ∈ R let mk,a be the maximum of µ(γ) over all the (k, a)-meshlines
inM, or 0 if no such meshlines exist. Define mk = pk + 1−

∑
a∈Rmk,a. Then

dimH0(S(N )) =

 m1 ·m2 if mk > 0 for k = 1, 2

0 if mk ≤ 0 for at least one k ∈ {1, 2},
(A.12)

In particular, if dim S(N ) 6= 0 then dimH0(S(N )) = 0.

Remark A.0.9. The sum in the expression of mk is a finite sum because mk,a is
different from 0 only for a finite number of a, i.e., when a (k, a)-meshline is in
the mesh.

The next result provides an estimate of the dimension of the homology term
H1(S(N )) in the special case that the spline mesh N is built through a mesh
refinement process from a coarse initial tensor spline mesh.

Theorem A.0.10 ([1, Theorem 6]). Let N0 be a tensor spline mesh in R2 and
let γ1, γ2, . . . be a sequence of splits. Define the sequence of spline meshes
Ni := Ni−1 + γi for i = 1, 2, . . .. Then,

dimH1(S(NN )) ≤ dimH1(S(N0)) +
N∑
i=1

max{0,−αi} ∀N > 0 (A.13)

where

αi =
ni∑
j=1

µ̃3−k(τj)− (p3−k + 1) (A.14)

and τττ
µ̃3−k
i,p3−k

= (τττ i, µ̃3−k, p3−k), with τττ i = (τ1, . . . , τni), is the expanded knot
vector defined on the k-split γi.

Remark A.0.11. If the univariate spline space on τττ
µ̃3−k
p3−k,i

is nontrivial, i.e.,
S(τττ µ̃3−k

i,p3−k
) 6= {0}, then, by Theorem 1.1.3, αi > 0.

Example A.0.12. In this example we estimate the spline space dimension on
a spline mesh. Consider bidegree ppp = (p, p) and the mesh M with assigned
multiplicities reported in Figure A.1(a). The cardinality of the box-partition is
|E| = 3 and, by looking at the meshline multiplicities, one can easily check that

µ1(qqq1) = 1, µ2(qqq1) = p+ 1, µ1(qqq5) = 1, µ2(qqq5) = 1,
µ1(qqq2) = 1, µ2(qqq2) = p+ 1, µ1(qqq6) = 1, µ2(qqq6) = p+ 1,
µ1(qqq3) = p+ 1, µ2(qqq3) = p+ 1, µ1(qqq7) = 1, µ2(qqq7) = p+ 1,
µ1(qqq4) = 1, µ2(qqq4) = 1, µ1(qqq8) = p+ 1, µ2(qqq8) = p+ 1,
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1 1 p + 1

(b)

Figure A.1: A spline mesh and the tensor spline mesh in it.

so that ∑
qqq∈V

[(p− µ1(qqq) + 1)(p− µ2(qqq) + 1)] = 2p2. (A.15)

Similarly, one can easily verify that

− (p+ 1)
∑
γ∈M

(p− µ(γ) + 1) = −5p2 − 5p. (A.16)

Therefore, by Theorem A.0.5, the spline space on the spline mesh N depicted in
Figure A.1 has dimension

dim S(N ) = 2p2 − 5p2 − 5p+ 3(p+ 1)2 + dimH1(S(N ))− dimH0(S(N ))
= p+ 3 + dimH1(S(N ))− dimH0(S(N )).

(A.17)

Moreover, Proposition A.0.8 ensures that dimH0(S(N )) = 0 because m1 = −2
(andm2 = −p−2). Next, we can use Theorem A.0.10 to estimate dimH1(S(N )).
Indeed, N can be seen as a refined mesh N = N1 = N0 + γ1 where
N0 = N0[τττµ1

1,p, τττ
µ2
2,p] is the tensor mesh shown in Figure A.1(b). In τττµ1

1,p and
τττµ2

2,p, the two sequences τττ1, τττ2 have the x-coordinates of qqq6, qqq7, qqq8 and the y-
coordinates of qqq1, qqq6 respectively as elements and the multiplicity functions
µ1, µ2 are the vertical and horizontal multiplicities of these vertices. The spline
spaces defined on τττµ1

1,p, τττ
µ2
2,p have dimension

dim S(τττµ1
1,p) = d1 =

8∑
i=6

µ1(qqqi)− (p+ 1) = 2

dim S(τττµ2
2,p) = d2 =

∑
i=1,6

µ2(qqqi)− (p+ 1) = p+ 1,
(A.18)

so that, by Proposition A.0.6, dimH0(S(N0)) = dimH1(S(N0)) = 0.
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A. Dimension of the spline spaces

The (expanded) spline sequence on γ1 is τττµ1
p with sequence τττ given by the

x-coordinates of the vertices qqq4, qqq5 in Figure A.1(a) and multiplicity function
equal to the vertical multiplicity of such vertices. Therefore,

α1 = µ1(qqq4) + µ1(qqq5)− (p+ 1) = 1 + 1− (p+ 1) = 1− p, (A.19)

and, by using Theorem A.0.10,

dimH1(S(N )) ≤ dimH1(S(N0)) + max{0,−α1} = max{0, p− 1}. (A.20)

For p ∈ {0, 1}, dimH1(S(N )) = 0 so that dim S(N ) = p + 3. If p ≥ 2,
dimH1(S(N )) ≤ p− 1 and dim S(N ) ≤ 2p+ 2.

By combining the results in Proposition A.0.6, Proposition A.0.8 and Theorem
A.0.10, we can state that the LR-rules, defined at the end of Section 1.1, are
sufficient conditions for a mesh refinement process to eliminate the homological
terms in the spline space dimension formula (A.10).
Remark A.0.13. In Example A.0.12, the LR-rule 2 is not verified for p ≥ 2 as the
spline space on the split to insert in the underlying tensor mesh has dimension
zero for p ≥ 2.
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Appendix B

B-splines
In this appendix we define univariate and bivariate B-splines and their basic
properties. We further recall the knot insertion algorithm, which is used for the
definition of the LR B-splines, and the Curry-Schoenberg Theorem. This latter
guarantees that the B-splines defined on a spline sequence form a basis for the
spline space on it. This introduction is far from a complete overview on the
B-spline theory. The reader interested in this topic is referred to the classical
books [2] and [3].

B.0.1 Univariate B-splines

Definition B.0.1. For a non-decreasing sequence ttt = (t1, t2, . . . , tp+2) we define
a B-spline B[ttt] : R→ R of degree p ≥ 0 recursively by

B[ttt](t) = t− t1
tp+1 − t1

B[t1, . . . , tp+1](t) + tp+2 − t
tp+2 − t2

B[t2, . . . , tp+2](t), (B.1)

where each time a fraction with zero denominator appears, it is taken as zero.
The initial B-splines of degree 0 on ttt are defined as

B[ti, ti+1](t) :=

 1 if ti ≤ t < ti+1;

0 otherwise;
for i = 1, . . . , p+ 1. (B.2)

The sequence ttt is called knot vector of B[ttt] and its elements are called knots.

By using
ωi,p(t) = t− ti

ti+p − ti
,

we can rewrite (B.1) as

B[ttt](t) = ω1,p(t)B[t1, . . . , tp+1](t) + (1− ω2,p(t))B[t2, . . . , tp+2](t)

and by iterating the recurrence relation,
B[ttt] = ω1,p(t)ω1,p−1(t)B[t1, . . . , tp](t) + ω1,p(t)(1− ω2,p−1(t))B[t2, . . . , tp+1](t)

+ (1− ω2,p(t))ω2,p−1(t)B[t2, . . . , tp+1](t)
+ (1− ω2,p(t))(1− ω3,p−1(t))B[t3, . . . , tp+2](t)

= . . . =
p−1∏
j=0

ω1,p−j(t)B[t1, t2](t) + . . .+
p−1∏
j=0

(1− ωj+2,p−j(t))B[tp+1, tp+2](t)

Therefore, the coefficient of every B[ti, ti+1](t) is a polynomial in Πp and it is
positive on [ti, ti+1). From the above expansion we derive the following basic
B-splines properties:
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B. B-splines

• B[ttt] restricted to any non-empty interval [ti, ti+1) is a polynomial in Πp,

• B[ttt] is nonnegative,

• B[ttt] has compact (or local) support, suppB[ttt] = [t1, tp+2].

Given a B-spline B[ttt] of degree p, we say that a knot tj ∈ ttt has multiplicity µ(tj)
if it appears µ(tj) times in ttt. We always assume that µ(tj) ≤ p+ 1 for every j
to ensure that the B-spline support is non-empty.

The next results yield two other fundamental B-splines properties: the
polynomial reproduction and the partition of unity. These are guaranteed for
the B-splines defined on open spline sequences.

Definition B.0.2. Given a spline sequence, tttp = (t1, . . . , tp+r+1), for some r ≥ 1,
the B-splines of degree p defined on tttp are the B-splines defined on the r
knot vectors provided by taking subcollections of p+ 2 consecutive elements in
tttp, B[tttip] with tttip = (ti, . . . , ti+p+1) ⊆ tttp, for i = 1, . . . , r.

Lemma B.0.3 ([2, page 95]). Let tttp = (t1, . . . , tp+r+1) for r ≥ 1 be an open
spline sequence and let B[tttip] for i = 1, . . . , r be the B-splines of degree p defined
on tttp. Then

(t− a)p =
r∑
i=1

ψi,p(a)B[tttip](t) a ∈ R, t ∈
r⋃
i=1

suppB[tttip] (B.3)

where ψi,0(a) := 1 and ψi,p(a) := (ti+1 − a) · · · (ti+p − a), for p ≥ 1.

The polynomial ψi,p is sometimes called dual polynomial of the B-spline
B[tttip]. By dividing by p! and deriving m times ψi,p, from (B.3) we get

(−1)m (t− a)p−m
(p−m)! =

r∑
i=1

Dmψi,p(a) 1
p!B[tttip](t). (B.4)

Equation (B.4) is called Marsden’s identity. Let q ∈ Πp. Then the Taylor
expansion of it at a is

q(t) =
p∑

m=0

(t− a)p−m
(p−m)! Dp−mq(a) =

p∑
m=0

r∑
i=1

Dmψi,p(a) (−1)m
p! Dp−mq(a)B[tttip](t)

and therefore

q(t) =
r∑
i=1

Λi,p(q)B[tttip](t) t ∈ ∪ri=1suppB[tttip] (B.5)

where

Λi,p(q) =
p∑

m=0

(−1)m
p! Dmψi,p(a)Dp−mq(a).

114



Figure B.1: The B-spline basis of S(ttt2) (solid) and of S(̃ttt2) (solid and dashed).

Equation (B.5) provides the representation of any polynomial in Πp in terms of
B-splines of degree p. In particular, by considering q(t) ≡ 1 and observing that
Λi,p(1) = 1 for all i, we get the following partition of unity:

1 =
r∑
i=1

B[tttip](t) t ∈
r⋃
i=1

suppB[tttip]. (B.6)

The next result is the Curry-Schoenberg Theorem. It guarantees that the
B-splines defined on an open spline sequence tttp form a basis of the spline space
S(tttp).

Theorem B.0.4 (Curry-Schoenberg [2, page 97]). Let tttp = (t1, . . . , tp+r+1) for
r ≥ 1 be an open spline sequence. Then the B-splines of degree p on tttp, {B[tttip]}ri=1
with tttip = (ti, . . . , ti+p+1) ⊆ tttp, form a basis for the spline space S(tttp).

This theorem can be extended to general spline sequences, not necessarily
open. Let tttp be a spline sequence and let t̃ttp be the corresponding open spline
sequence given by duplicating the first and last element of tttp enough times.
Since tttp ⊆ t̃ttp, we have S(tttp) ⊆ S(̃tttp). Let B = {B [̃tttip]}i be the B-spline basis
of S(̃tttp). Then a basis for S(tttp) is composed by the B-splines in B that have
knot vector in tttp. Indeed, such B-splines are contained in S(tttp) and are linearly
independent because they are elements of the basis B and their number is equal to
dim S(tttp), by definition of the knot vectors tttip ⊆ tttp. This procedure is illustrated
in Figure B.1. Here we consider degree p = 2 and a spline sequence ttt2 of 4
elements (black dots). By Theorem 1.1.3, dim S(ttt2) = 4 − (2 + 1) = 1. The
corresponding open spline sequence t̃tt2 is composed of 8 elements: the four of ttt2
with the first and the last repeated p+ 1 = 3 times (black and white dots). The
dimension of S(̃ttt2) is equal to 5 and its B-spline basis B is represented in the
figure (both the dashed and solid B-spline plots). The B-spline spanning the
spline space on the original spline sequence ttt2 is the B-spline drawn with a solid
line.

Given a spline sequence tttp = (t1, . . . , tp+r+1), let {B[tttip]}ri=1 be the B-splines
of degree p defined on tttp. They are basis for S(tttp) by the Curry-Schoenberg
Theorem. In particular, on any non-empty interval [t`, t`+1) we have

span {B`−p, . . . , B`}|[t`,t`+1) ≡ Πp|[t`,t`+1),

and so all non-vanishing B-splines defined on [t`, t`+1) are linearly independent.
This is enough to state that the B-splines on tttp are locally linearly independent.
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B. B-splines

Corollary B.0.5. Given a spline sequence tttp, the B-splines of degree p defined
on tttp are locally linearly independent.

Furthermore, given the knot vector ttt = (t1, . . . , tp+2) of a B-spline B[ttt] of
degree p, let ti1 , . . . , tir be the distinct knots in ttt. Define the spline sequence τττµp
by setting τττ = (τ1 = ti1 , . . . , τr = tir) and the multiplicities µ(τ`) equal to the
number of times ti` appears in ttt, for ` = 1, . . . , r. Then the Curry-Schoenberg
Theorem shows that B[ttt] is Cp−µ(ti` )-continuous at ti` for ` = 1, . . . , r.

We conclude this section by recalling knot insertion. Given a spline sequence
tttp = (t1, . . . , tp+r+1) and a value t̂ ∈ (t1, tp+r+1), consider the refined spline
sequence tttp ∪ {t̂} = t̂ttp. This is a sequence of p + r + 2 elements. Let B and
B̂ be the B-spline bases of S(tttp) and S(̂tttp) respectively. Since tttp ⊆ t̂ttp, we have
S(tttp) ⊆ S(̃tttp) and in particular all the B-splines in B can be expressed as a linear
combination of the B-splines in B̂. Knot insertion provides the coefficients for
these expressions.

Theorem B.0.6 (knot insertion, [1, page 200]). Given a B-spline of degree p, B[ttt],
defined on the knot vector ttt = (t1, . . . , tp+2), and a value t̂ ∈ (t1, tp+2), suppose
we insert t̂ in ttt. Then, we obtain two knot vectors ttt1 and ttt2 considering the first
and last p+ 2 consecutive elements in the non-decreasing sequence t̂tt = ttt ∪ {t̂}.
Then

B[ttt] = α1B[ttt1] + α2B[ttt2]

with α1, α2 ∈ (0, 1] provided by

α1 =
{

1, t̂ ∈ [tp+1, tp+2)
t−t1/tp+1−t1 t̂ ∈ (t1, tp+1) α2 =

{
1, t̂ ∈ (t1, t2]
tp+2−t/tp+2−t2 t̂ ∈ (t2, tp+2).

(B.7)

B.0.2 Bivariate B-splines

Definition B.0.7. Consider a bidegree ppp = (p1, p2) and let xxx = (x1, . . . , xp1+2)
and yyy = (y1, . . . , yp2+2) be nondecreasing sequences. We define the bivariate
B-spline B[xxx,yyy] : R2 → R by

B[xxx,yyy](x, y) := B[xxx](x)B[yyy](y), (B.8)

where B[xxx] and B[yyy] are the univariate B-splines defined on xxx and yyy respectively.

By their definition, the properties of the univariate B-splines are conserved
by the bivariate B-splines:

• B[xxx,yyy] is a piecewise bivariate polynomial of bidegree ppp,

• B[xxx,yyy] is nonnegative,

• B[xxx,yyy] has compact (local) support, suppB[xxx,yyy] = [x1, xp1+2]× [y1, yp2+2].
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Definition B.0.8. Given a tensor spline mesh N = N [xxxp1 , yyyp2 ], with xxxp1 =
(x1, . . . , xp1+r1+1) and yyy = (y1, . . . , yp2+r2+1), the B-splines defined on N are
the bivariate B-splines

{B[xxxip1
, yyyjp2

]}i,j with i = 1, . . . , r1 and j = 1, . . . , r2,

where xxxip1
= (xi, . . . , xi+p1+1) ⊆ xxxp1 and yyyjp2

= (yj , . . . , yj+p2+1) ⊆ yyyp2 .

It is then clear, by applying equations (B.5) and (B.6) respectively, that, given
an open tensor spline mesh N , the bivariate B-splines defined on N reproduce
the polynomials in Πppp and sum to one.

Furthermore, by the Curry-Schoenberg Theorem, given any tensor spline mesh
N = (M, µ,ppp), the B-splines defined on N form a basis of S(N ) and are locally
linearly independent. Moreover, we recall that, given a bivariate B-spline B[xxx,yyy],
its knot vectors xxx,yyy identify a tensor spline mesh N [xxx,yyy] = (M[xxx,yyy], µ[xxx,yyy], ppp)
where the splits of M[xxx,yyy] are defined by the distinct knots in xxx and yyy and
the multiplicity function µ[xxx,yyy] by the times these distinct knots appear in the
sequences, see the beginning of Section 1.2 in the Introduction. Then, again
by the Curry-Schoenberg Theorem, B[xxx,yyy] is Cpk−µ(γ)-continuous across any
k-meshline γ inM[xxx,yyy].

Finally, as in the univariate case, after the insertion of a knot x̂ in xxx, we
define xxx1 and xxx2 considering in (x1, . . . , x̂, . . . , xp1+2) the first and last p1 + 2
knots respectively, and we can write B[xxx,yyy] in terms of the two B-splines defined
on the two new pairs of knot vectors

B[xxx,yyy] = α1B[xxx1, yyy] + α2B[xxx2, yyy] (B.9)

with α1, α2 ∈ (0, 1] provided by (B.7). The same holds when inserting a knot ŷ
in yyy.
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